
Physics 217
Problem Set 7

Due: Fri, October 26th, 2018

Consider a particle in the ground state of an infinite well of width a,

ψ(x) =
√

2
a

cos(πx/a) (−a/2 < x < a/2)

= 0 (x < −a/2, x > a/2)

At time t = 0 we suddenly take away the “walls” of the well, setting V (x) = 0
everywhere. The state is still ψ(x), but it is now appropriate to write this
state as a superposition of plane waves,

ψ(x) =

∫ ∞
−∞

ψ̃(k)
exp(ikx)√

2π
dk . (*)

1. Calculate ψ̃(k), the Fourier transform of ψ(x). (Remember that sin θ =
(exp(iθ)−exp(−iθ)/(2i).) Calculate |ψ̃(k)|2. Check that |ψ̃(k)|2 is nor-
malized correctly: the easiest way is to evaluate the integral numerically
(using Mathematica or other software) for various values of a. Make a
plot of |ψ̃(k)|2 for k from -0.2 to 0.2, for a = 100.

2. Calculate k0, the lowest value of k at which |ψ̃(k)|2 = 0. As the infinite
well becomes wider (increasing a), what happens to k0? Note from
your plot of |ψ̃(k)|2 that the dominant contribution to ψ̃ comes from
0 < k < k0, so k0 is an estimate of ∆k, the range of wavenumbers of
the plane waves that constitute ψ(x). The uncertainty in position is
∆x = a. Write down ∆x∆k and hence ∆x∆p. Is your result consistent
with Heisenberg’s uncertainty relation?

3. Equation (*) above shows how, if you add together plane waves of
all wavenumbers k with the appropriate weights, you can build any
function you want to. In this question we will use Mathematica to see
how the function becomes closer to what we wanted as we include more
wavenumbers.

First, create a function psi$tilde(k) that evaluates your expression
for ψ̃(k) from question 1, for the case where a = 100. Now create an-
other function psi$approx(x) that makes a crude approximation to
the integral in equation (*) by just using the value of ψ̃(k) at k = 0.03.
Plot the real part of this function for the range x = −400 to x = 400.
You see that you get a cos wave with a bump as desired between
x = −50 and x = 50, but also bumps elsewhere. What determined
the wavelength of the sine wave? Improve things by including the con-
tribution from k = 0.06. Plot this version too, and see that it is closer
to what we wanted.



To continue this by including the contributions from different wavenum-
bers, modify your function psi$approx(x) so that it takes both x and
k as its arguments. Then add this line to your code:

plot$approx[start_, end_, incre_] :=

Plot[Re[Sum[psi$approx[x, i], {i, start, end, incre}]],

{x, -400, 400}, PlotRange -> All, AxesLabel -> {"x"},

PlotLabel -> "Approximated wavefunciton psi(x)"];

The function plot$approx sums the comtributions of psi$approx(x,
k) for the k’s from start to end, incremented by incre, and then plot
the approximated function. Reproduce your previous result with this
function.

Add more wavenumbers, see how the sum of plane waves approximates
the desired wavepacket more and more closely as we allow contributions
from plane waves with a wider range of wavelengths.

Why is it wavenumbers k of order 0.05 that are important? What goes
wrong if you leave out the lower wavenumbers? What goes wrong if you
leave out the higher wavenumbers?


