Problem set IO

```
(* 1 .
\(\Phi_{m_{1}}^{*}(\phi) \Phi_{m_{1}}(\phi)=\left(A^{*} e^{-i m_{1} \phi}+B^{*} e^{+i m_{1} \phi}\right)\left(\mathrm{Ae}^{+i m_{1} \phi}+\mathrm{Be}^{i \mathrm{~m}_{1} \phi}\right)\)
\(=|A|^{2}+|B|^{2}+A^{*} B e^{-2 i m m_{1} \phi}+B^{*} A e^{+2 i m_{1} \phi} ;\)
```

The last two terms are manifestly functions of ϕ. The
only way they can be eliminated is if either A or B is zero.
(A and B can not both be zero, or the solution itself would be zero.)
Thus, we are left with either $A e^{+i m_{1} \phi}$ or $\mathrm{Be}^{i \mathrm{~m}_{1} \phi}$, which,
if m_{1} may take on both positive and negative integer values, are equivalent.
*)
(* 2 .

$$
\begin{aligned}
\frac{-\hbar^{2}}{2 m} \frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d r}{d r}\right) A e^{-b r} & =\frac{-\hbar^{2}}{2 m} \frac{1}{r^{2}} \frac{d l}{d r}\left(-b A r^{2} e^{-b r}\right) \\
& =\frac{-\hbar^{2}}{2 m} \frac{1}{r^{2}}\left(b^{2} r^{2}-2 b r\right) A e^{-b r} \\
& =\frac{-\hbar^{2} b^{2}}{2 m} A e^{-b r}+\frac{\hbar^{2} b}{m} \frac{1}{r} A e^{-b r} ;
\end{aligned}
$$

The three other terms in radial equation (7-31) are proportional to $\frac{1}{r^{2}} A e^{-b r}, \frac{1}{r} A e^{-b r}$ and $A e^{-b r}$. Neither of the two terms we have thus far could cancel the first, so its coefficient must be zero, implying that l= 0 . The term $\frac{\hbar^{2} b}{m} \frac{1}{r} A e^{-b r}$ must cancel the potential energy term in (7-31).

$$
\frac{\hbar^{2} \mathrm{~b}}{\mathrm{~m}} \frac{1}{\mathrm{r}} \mathrm{Ae}^{-\mathrm{br}}=\frac{1}{4 \pi \epsilon_{0}} \frac{\mathrm{e}^{2}}{\mathrm{r}} \mathrm{Ae}^{-\mathrm{br}} \Rightarrow \mathrm{~b}=\frac{\mathrm{me}^{2}}{4 \pi \epsilon_{0} \hbar^{2}} \text {. Finally, }
$$

the remaining terms must be equal: $\frac{-\hbar^{2} b^{2}}{2 m} A e^{-b r}=E A e^{-b r} \Rightarrow E=-\frac{\hbar^{2} b^{2}}{2 m}=-\frac{\hbar^{2}\left(\frac{\mathrm{me}^{2}}{4 \pi e^{2} \mathrm{~h}^{2}}\right)^{2}}{2 \mathrm{~m}}$

$$
=-\frac{\mathrm{me}^{4}}{2\left(4 \pi \epsilon_{0}\right)^{2} \hbar^{2}} \text {. This is the correct ground-state energy. }
$$

*)
(* 3 .

$$
\begin{aligned}
& =\left(L_{x} L_{x} L_{z}-L_{z} L_{x} L_{x}\right)+\left(L_{y} L_{y} L_{z}-L_{z} L_{y} L_{y}\right)+0 \\
& =L_{x}\left(L_{x} L_{z}-L_{z} L_{x}\right)+\left(L_{x} L_{z}-L_{z} L_{x}\right) L_{x}+L_{y}\left(L_{y} L_{z}-L_{z} L_{y}\right)+\left(L_{y} L_{z}-L_{z} L_{y}\right) L_{y}
\end{aligned}
$$

$$
\begin{aligned}
& =i \hbar\left(-\mathrm{L}_{\mathrm{x}} \mathrm{I}_{\mathrm{y}}+-\mathrm{L}_{\mathrm{y}} \mathrm{~L}_{\mathrm{x}}+\mathrm{L}_{\mathrm{y}} \mathrm{~L}_{\mathrm{x}}+\mathrm{L}_{\mathrm{x}} \mathrm{I}_{\mathrm{y}}\right) \\
& =0 \text {. }
\end{aligned}
$$

*)
(* 4 .
$\mathbf{Y}_{1,1}(\theta, \phi)=$
$-\sqrt{\frac{3}{8 \pi}}(\sin \theta) e^{i \phi}$. Plug it into the angular part of the Schrodinger equation:

$$
\frac{d^{2}}{d \theta^{2}} \mathbf{Y}_{1,1}+\cot \theta \frac{d}{d \theta} \mathbf{Y}_{1,1}+\frac{1}{\sin ^{2} \theta} \frac{d^{2}}{d \phi^{2}} \mathbf{Y}_{1,1}=-\sqrt{\frac{3}{8 \pi}}\left(-\sin \theta e^{i \phi}+\cot \theta \cos \theta e^{i \phi}+\frac{1}{\sin ^{2} \theta} \sin \theta\left(-e^{i \phi}\right)\right)
$$

$$
=-\sqrt{\frac{3}{8 \pi}} \frac{e^{i \phi}}{\sin \theta}\left(-\sin ^{2} \theta+\cos ^{2} \theta-1\right)
$$

$$
=-\sqrt{\frac{3}{8 \pi}} \frac{\mathrm{e}^{\mathrm{i} \phi}}{\sin \theta}\left(-2 \sin ^{2} \theta\right)
$$

$$
=2 \sqrt{\frac{3}{8 \pi}} e^{i \phi} \sin \theta=-1(1+1) Y_{1,1}(\theta, \phi) .
$$

$$
\frac{d^{2}}{d \phi^{2}} Y_{1,1}=-\sqrt{\frac{3}{8 \pi}}(\sin \theta)\left(-e^{i \phi}\right)=-1^{2} Y_{1,1}(\theta, \phi) .
$$

Therefore the $l=$

1. $\mathrm{m}_{1}=1$ spherical harmonic $\mathrm{Y}_{1,1}(\theta, \phi)$ is a solution of the angular part of the Schrodinger equation for a central potential.
*)
