## Physics 217 Midterm Exam

(* 1. (a) Compton scattered X-rays off of electrons;
(b) Compton observed that the X-rays scattered off of the target had wavelength peaks in two locations, one at the wavelength of the initial $X$ ray, and a second at some shifted wavelength $\lambda^{\prime}$;
(c) Compton's experiments were surprising because of the two peaks which occurred. Physicists of that time thought light behaved only wavelike and this could not explain the two peaks;
(d) The Compton effect tells us that light
demonstrates particle like properties.
*)
(* 2. (a) Inside of the well the Hamiltonian is $\hat{H}=\frac{\hat{\mathrm{P}}^{2}}{2 \mathrm{~m}}$; Outside of the well the potential is infinite, which gives rise to the necessary boundary conditions
(there can be no wave functions outside the well): $\psi(x=a)=\psi(x=0)=0$;
(b) For the given wavefunctions, we have $\hat{H} \psi(x)=\frac{\hat{p}^{2}}{2 m} \psi(x)=$ $\frac{\hbar^{2} k^{2}}{2 m} \psi(x)$. Hence these are the eigenstates of the Hamiltonian. The boundary conditions gives the values of $k$ as $k=\frac{n \pi}{a}$, where $n$ is a positive integer;
(c) From part (b) we see that the energy eigenvalues are $\frac{\hbar^{2} k^{2}}{2 m}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}}$;
(d) $\hat{\mathrm{p}} \psi(\mathrm{x})=\frac{-\mathrm{i} \hbar \mathrm{n} \pi}{\mathrm{a}} \sqrt{\frac{2}{a}} \cos (\mathrm{kx}) \neq \mathrm{p} \psi(\mathrm{x})$. This works because $\psi(\mathrm{x})=$ $\sin (k x)$ is a linear combination of momentum eigenfunctions ( $e^{i k x}$ ) meaning that $\psi(x)$ itself is not a momentum eigenfunction;
(e) Adding the normal time dependence we get $\Psi(x, t)=\frac{1}{2} \psi_{1}(x) e^{-i E_{1} t / \hbar}-$ $\frac{\sqrt{3}}{2} \psi_{2}(x) e^{-i E_{2} t / \hbar}$. The time-dependent Schrodinger equation states $i \hbar \frac{\partial}{\partial t} \Psi=$
$-\frac{\hbar^{2}}{2 m} \frac{\partial}{\partial x^{2}} \Psi$. Putting our wavefunction into this equation,
the left hand side looks like i $\hbar \frac{\partial}{\partial t} \Psi=$
$\frac{E_{1}}{2} \psi_{1}(x) e^{-i E_{1} t / \hbar}-\frac{\sqrt{3} E_{2}}{2} \psi_{2}(x) e^{-i E_{2} t / \hbar}$. The right hand side looks like $-\frac{\hbar^{2}}{2 m} \frac{\partial}{\partial x^{2}} \Psi=$ $\frac{1}{2} \frac{\hbar^{2} k_{1}^{2}}{2 m} \psi_{1}(x) e^{-i E_{1} t / \hbar}-\frac{\sqrt{3}}{2} \frac{\hbar^{2} k_{2}^{2}}{2 m} \psi_{2}(x) e^{-i E_{2} t / \hbar}=\frac{E_{1}}{2} \psi_{1}(x) e^{-i E_{1} t / \hbar}-\frac{\sqrt{3} E_{2}}{2} \psi_{2}(x) e^{-i E_{2} t / \hbar}$. We see that the left and right sides of the equation are equivalent thus this wavefunction satisfies the time-dependent Schrodinger equation.
*)
(* 3. (a) $\int_{-\infty}^{\infty}|\Psi|^{2} d x=\int_{-\infty}^{0} 2 q e^{2 q x} d x+\int_{0}^{\infty} 2 q e^{-2 q x} d d x=2$. Thus this wavefunction is not normalized. In order to normalize the wavefunction, we need to multiply it by $\frac{1}{\sqrt{2}}$, obtaining the wavefunction $\Psi(x, t=0)=$ $\sqrt{q} e^{-q|x|}$ which is normalized. The units of $q$ are inverse length. (the argument of the exponential function should be unitless, and $x$ has the unit of length, hence $q$ has the unit inverse length);
(b) $\tilde{\psi}(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \sqrt{q} e^{-q|x|} e^{i k x} d x=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{0} \sqrt{q} e^{(q+i k) x} d x+\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} \sqrt{q} e^{(-q+i k) x} d x=$ $\sqrt{\frac{q}{2 \pi}}\left(\frac{1}{q+i k}-\frac{1}{-q+i k}\right)=\sqrt{\frac{q}{2 \pi}} \frac{2 q}{q^{2}+k^{2}}=q^{\frac{3}{2}} \sqrt{\frac{2}{\pi}} \frac{1}{q^{2}+k^{2}}$.
*)

