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e  Dynamical self-energy and spectroscopic factors < 1



Many-body perturbation theory for G

e [dentify solvable problem by considering ﬁo ~T+U
where U i1s a suitable auxiliary potential.

* Develop expansion in ﬁl -V-U

 Employs time-evolution, Heisenberg, Schrodinger, and
interaction picture of quantum mechanics.

* Once established, this expansion (expressed in Feynman diagrams)
1s organized 1n such a way that nonperturbative results can be
obtained leading to the Dyson equation. The Dyson equation
describes sp motion in the medium under the influence of the
self-energy which is an energy-dependent complex sp potential.

e Further insight into the proper description of sp motion in the
medium 1s obtained by studying the relation between sp and
two-particle propagation. This allows the selection of appropriate
choices of the relevant ingredients for the system under study.



How to calculate G?

Rearrange Hamiltonian ﬁ = f + ‘7 = (f + (7) + (‘7 - ﬁ) = Iflo + H,

Many-body problem with H, can be exactly solved
when U is a one-body potential like a Woods-Saxon or HO potential.
Corresponding sp propagator (replace H by H,)
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and  n( de(S E-¢,)0(F -a)=6(F -a) ~ like in atoms



Perturbation expansion using G and H,
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Can be calculated order by order using diagrams and Wick’s theorem.
Yields expressions involving G and matrix elements
of the two-body interaction V (and the auxiliary potential U)

Simple diagram rules in time formulation.

For practical calculations use energy formulation. Diagrams



Diagram rules 1n energy formulation

Rule 1 Draw all topologically distinct (direct) and connected
diagrams with m horizontal interaction lines for 17 (dashed)

and 2m + 1 directed (using arrows) Green’s functions G'°)
Rule 2 Label external points only with sp quantum numbers,
e.g. o and 3

Label each interaction with sp quantum numbers

~0) = (aB|V

e = (afB|V v8) — (af8

V1)

For each arrow line one writes

o/

\E = GO (u,v; E)

L

but in such a way that energy is conserved for each V/
Rule 3 Sum (integrate) over all internal sp quantum numbers and
integrate over all m internal energies

For each closed loop an independent energy integration
occurs over the contour C' 1

Rule 4 Include a factor (i/27)™ and (—1)¥ where F
is the number of closed fermion loops
Rule 5 Include a factor of % for each equivalent pair of lines




Examples of diagrams
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More diagrams
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Diagram organization

Sum of all diagrams can be written as




Introducing some selt-energy diagrams

First order
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The 1rreducible self-energy

The following self-energy diagram is reducible (previous two
were 1rreducible), i.e. can be obtained from lower order self-energy
terms by iterating with G©
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Sum of all irreducible diagrams is denoted by X",
All diagrams can then be obtained by summing

G(a.BE) =G (0, BE) + EG(O)(a,y;E)Z*(y,(S;E)G(O)(é,/a’;E) +

Y0

diagrammatically ...



Towards the Dyson equation

Can be summed by




Dyson equation ? GO
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Looks like the propagator equation for a single particle

G(at,E) = G (o, BE) + EG(O)(a,y;E)Z*(y,é;E)G(é,ﬁ;E)

with the irreducible self-energy acting as the in-medium
(complex) potential.



Link with two-particle propagator

Equation of motion for G

ihiG(a, Bit—1)=6(t-1)d,
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Diagrammatic analysis of G yields

ae

® 3

8

Y

3

I 1s the effective interaction (vertex function)
between correlated particles in the medium.



Dyson equation and vertex function

Fourier transform of equation of motion for G yields again the
Dyson equation with the self-energy
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In diagram form

= Fxact result




Dyson Equation and “experiment”
G(0)

: . Equivalent to ....!!

) ’ Schrodinger-like equation with: E, = Eg —E,"
G
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Self-energy: non-local, energy-dependent potential (no U)
With energy dependence: spectroscopic factors < 1

2 1
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Physics 1s in the choice of the approximation to the self-energy



Hartree-Fock

For weakly interacting particles: independent propagation dominates
=> neglect vertex function in self-energy

Dyson Equation

_____ O Democracy in action
< self-consistency

Il
+
+

Hartree — Fock approximation

¢ dE |
2 (1) =~(rle)-if - SlmlVovic" (v
No energy dependence = static mean field
Not a valid strategy for realistic NN interactions
With “effective” interactions can yield good quasihole wave functions

HF levels full or empty; spectroscopic factors 1 or O accordingly




HF for “closed”-shell atoms
Removal energies Total energy
HF Exp. HF Exp.
He | 1s | -0.918  -0.9040 -2.862 -2.904
Be | 1s | -4.733  -4.100 -14.573  -14.667
25 | -0.309  -0.343
Ne | 1s | -32.77  -31.70 | -128.547 -128.928
25 | -1.930  -1.782
2p | -0.850  -0.793
Mg | 1s | -49.03  -47.91 [ -199.615 -200.043
2s | -3.768 -3.26
2p | -2.283 -1.81
3s | -0.253  -0.2811
Ar | 1s | -118.6  -117.87 | -526.818 -527.549
2s | -12.32  -12.00
2p | -9.571  -9.160
3s | -1.277  -1.075
3p | -0.591  -0.579

Energies in atomic units (Hartree)

HF good starting
point for atoms
but total energy
dominated by core
electrons.

Description of
valence electrons
not good enough
to do chemistry.

Spectroscopic
factors not OK.
Wave functions v’



Beyond HF = dynamical self-energy

Dyson equation

Approximate

vertex function by
r=v
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{ Includes dynamics

Use HF propagator to initiate self-consistent solution
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Poles at 2p1h and 2h1p energies
Interesting consequences for solution of Dyson equation



Diagonal approximation

Further simplification: assume no mixing between major shells
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Corresponding Dyson equation

1

G(ot;E)=G" (a;E) + G(a; E)E P (a; E)G™ (o, E) = E (o E)
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Assume discrete poles in X, then discrete solution (poles of G) for

E,=¢+2%(E,,)

) i ) 1
With residue (spectroscopic factor R =
(sp p ) R, )
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Explains all qualitative features of sp strength distribution in nuclei!




Self-consistent calculation with Skyrme force
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Van Neck et al. NPAS30,347(1991)

Data: ¥Ca(e,ep)
Kramer NIKHEF
(1990)

Qualitatively OK
No relation with
realistic V yet!



Self-consistent Green’s functions
and the energy of the ground state of atoms

Dyson equation
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[ Includes dynamics

Atoms : total ground state energies (a.u.)

Method He Be Ne

DFT 2913  -14.671 -128.951
HF -2.862 -14.573 -128.549
CI -2.891 -14.617 -128.733
Dyson(2) -2.899  -14.647 -128.939

Exp. -2.904 -14.667 -128.928

Dyson(2)

Van Neck, Peirs,Waroquier

J. Chem. Phys. 115, 15 (2001)
Dahlen & von Barth

J. Chem. Phys. 120,6826 (2004)

Mg Ar
-200.093 -527.553
-199.617 -526.826
-199.635 -526.807
-200.027 -527.511

-200.043 -527.549



