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Outline

• Outline of perturbation theory
• Diagrams and diagram rules
• Self-energy and Dyson equation
• Link between sp and two-particle propagator
• Self-consistent Green’s functions
• Hartree-Fock
• Dynamical self-energy and spectroscopic factors < 1



Many-body perturbation theory for G
• Identify solvable problem by considering

€ 

ˆ H 0 = ˆ T + ˆ U 
where U is a suitable auxiliary potential.

• Develop expansion in 

€ 

ˆ H 1 = ˆ V − ˆ U 

• Employs time-evolution, Heisenberg, Schrödinger, and 
   interaction picture of quantum mechanics.
• Once established, this expansion (expressed in Feynman diagrams)
   is organized in such a way that nonperturbative results can be
   obtained leading to the Dyson equation. The Dyson equation
   describes sp motion in the medium under the influence of the
   self-energy which is an energy-dependent complex sp potential.
• Further insight into the proper description of sp motion in the
   medium is obtained by studying the relation between sp and
   two-particle propagation. This allows the selection of appropriate
   choices of the relevant ingredients for the system under study.



How to calculate G?
Rearrange Hamiltonian

€ 

ˆ H = ˆ T + ˆ V = ˆ T + ˆ U ( ) + ˆ V − ˆ U ( ) = ˆ H 0 + ˆ H 1
Many-body problem with H0 can be exactly solved 
when U is a one-body potential like a Woods-Saxon or HO potential.
Corresponding sp propagator (replace H by H0)
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using the sp basis associated with H0. Note that

€ 

ˆ H 0aα
+ Φ0
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So that e.g.

€ 

Sh
(0)(α;E) =

1
π
ImG(0) α,α;E( ) = δ E −εα( )θ F −α( )

and

€ 

n(0) α( ) = dEδ E −εα( )θ F −α( )
−∞

ε F
( 0)−

∫ = θ F −α( ) ~ like in atoms



Perturbation expansion using G(0) and H1

Use “interaction picture”
  

€ 

ˆ H 1 t( ) = e
i
h

ˆ H 0t ˆ H 1e
−
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then ……
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Can be calculated order by order using diagrams and Wick’s theorem.
Yields expressions involving G(0) and matrix elements 
of the two-body interaction V (and the auxiliary potential U)

Simple diagram rules in time formulation. 

For practical calculations use energy formulation. Diagrams



Diagram rules in energy formulation



Examples of diagrams



More diagrams



Diagram organization
Sum of all diagrams can be written as 



Introducing some self-energy diagrams
First order

One of the second order diagrams



The irreducible self-energy
The following self-energy diagram is reducible (previous two
were irreducible), i.e. can be obtained from lower order self-energy
terms by iterating with G(0)

Sum of all irreducible diagrams is denoted by Σ*.
All diagrams can then be obtained by summing

  

€ 

G α,β;E( ) =G(0) α,β;E( ) + G(0) α,γ;E( )Σ* γ,δ;E( )G(0) δ,β;E( ) +L
γ ,δ
∑

diagrammatically …



Towards the Dyson equation

Can be summed by



Dyson equation

€ 

G α,β;E( ) =G(0) α,β;E( ) + G(0) α,γ;E( )Σ* γ,δ;E( )G δ,β;E( )
γ ,δ
∑

Looks like the propagator equation for a single particle

with the irreducible self-energy acting as the in-medium 
(complex) potential.



Link with two-particle propagator
Equation of motion for G
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Diagrammatic analysis of GII yields

Γ is the effective interaction (vertex function) 
between correlated particles in the medium.



Dyson equation and vertex function
Fourier transform of equation of motion for G yields again the
Dyson equation with the self-energy

€ 
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In diagram form



Dyson Equation and “experiment”

Equivalent to ….!!

  

€ 
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Self-energy: non-local, energy-dependent potential (no U)
With energy dependence: spectroscopic factors < 1

€ 

En
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N−1Schrödinger-like equation with:

Physics is in the choice of the approximation to the self-energy
€ 
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Hartree-Fock
For weakly interacting particles: independent propagation dominates
⇒ neglect vertex function in self-energy

Democracy in action
⇔ self-consistency

€ 

ΣHF γ,δ( ) = − γ U δ − i
C↑

dE '
2π

γµV δν GHF ν,µ;E '( )∑∫
No energy dependence ⇒ static mean field
Not a valid strategy for realistic NN interactions
With “effective” interactions can yield good quasihole wave functions
HF levels full or empty; spectroscopic factors 1 or 0 accordingly



HF for “closed”-shell atoms

HF good starting
point for atoms
but total energy 
dominated by core
electrons.

Description of
valence electrons
not good enough
to do chemistry.

Spectroscopic
factors not OK.
Wave functions 

Energies in atomic units (Hartree)



Beyond HF ⇒ dynamical self-energy

Approximate
vertex function by
Γ = V

Use HF propagator to initiate self-consistent solution

€ 
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Poles at 2p1h and 2h1p energies
Interesting consequences for solution of Dyson equation



Diagonal approximation
Further simplification: assume no mixing between major shells
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Corresponding Dyson equation

€ 

G α;E( ) =GHF α;E( ) +G α;E( )Σ(2) α;E( )GHF α;E( ) =
1

E −εα − Σ
(2) α;E( )

Assume discrete poles in Σ, then discrete solution (poles of G) for

€ 

Enα = εα + Σ(2) α;Enα( )

With residue (spectroscopic factor)

€ 

Rnα =
1

1− ∂Σ
(2) α;E( )
∂E

Enα



Solutions

Explains all qualitative features of sp strength distribution in nuclei!



Self-consistent calculation with Skyrme force

Van Neck et al. NPA530,347(1991)

Data: 48Ca(e,e´p)
Kramer NIKHEF
(1990)

Qualitatively OK
No relation with
realistic V yet! 



Self-consistent Green’s functions
and the energy of the ground state of atoms

Atoms : total ground state energies (a.u.)

Method    He      Be             Ne     Mg             Ar
DFT -2.913  -14.671        -128.951 -200.093        -527.553
HF -2.862  -14.573        -128.549 -199.617        -526.826
CI -2.891  -14.617        -128.733 -199.635        -526.807
Dyson(2) -2.899  -14.647        -128.939 -200.027        -527.511

Exp. -2.904  -14.667        -128.928 -200.043        -527.549

Dyson(2)

Van Neck, Peirs,Waroquier
J. Chem. Phys. 115, 15 (2001)
Dahlen & von Barth
J. Chem. Phys. 120,6826 (2004)


