Spectroscopic factors and the physics of the singleparticle strength distribution in nuclei

Lecture 1: 7/18/05 Propagator description of single-particle motion and the link with experimental data

Lecture 2: 7/19/05 From diagrams to Hartree-Fock and spectroscopic factors < 1
Lecture 3: 7/20/05 Influence of long-range correlations and the relation to excited states
Lecture 4: 7/21/05 Role of short-range and tensor correlations associated with realistic interactions. Prospects for nuclei with N very different from Z .

Lecture 5: 7/22/05 Saturation problem of nuclear matter

Wim Dickhoff
Washington University in St. Louis

Some questions ...

What does a nucleon do in the nucleus?

Is this a legitimate question? Speculations ...

How strong is the dependence on N and Z ?
Energy scales:
As high as a realistic V_{NN} will take you
Δ-isobars, pions

As low as the first excited state
\Rightarrow ALL OF THEM! HOW?
\Rightarrow Time-dependent formulation not surprising

How?

Method:	Green's functions (Propagators) Feynman diagrams
Why:	Physical insight and useful for all many-body systems Link between experiment and theory clear Can include all energy scales Efficient with information; generates amplitudes not wave functions
(Text)Book:	Willem H Dickhoff \& Dimitri Van Neck "Many-Body Theory Exposed!" Propagator description of quantum mechanics in many-body systems World Scientific (2005)
	WHD \& Carlo Barbieri

Outline

- What is a propagator
- Propagator in the many-body problem
- Information contained in propagator
- Spectral functions
- Relation with experimental data
- Experimental results
- Outline of perturbation theory

What is a propagator or Green's function?

Time evolution is governed by the Hamiltonian H. For a single particle the state

$$
\left|\alpha, t_{0} ; t\right\rangle=e^{-\frac{i}{\hbar} H\left(t-t_{0}\right)}\left|\alpha, t_{0}\right\rangle
$$

is indeed a solution of $\quad i \hbar \frac{\partial}{\partial t}\left|\alpha, t_{0} ; t\right\rangle=H\left|\alpha, t_{0} ; t\right\rangle$
Relation between wave function at t and t_{0} can then be written as

$$
\begin{gathered}
\psi(\vec{r}, t)=\left\langle\vec{r} \mid \alpha, t_{0} ; t\right\rangle=\langle\vec{r}| e^{-\frac{i}{\hbar} H\left(t-t_{0}\right)}\left|\alpha, t_{0}\right\rangle=\int d \vec{r}^{\prime}\langle\vec{r}| e^{-\frac{i}{\hbar} H\left(t-t_{0}\right)}\left|\vec{r}^{\prime}\right\rangle\left\langle\vec{r}^{\prime} \mid \alpha, t_{0}\right\rangle \\
=i \hbar \int d \vec{r}^{\prime} G\left(\vec{r}, \vec{r}^{\prime} ; t-t_{0}\right) \psi\left(\vec{r}^{\prime}, t_{0}\right)
\end{gathered}
$$

with the propagator or Green's function defined by

$$
G\left(\vec{r}, \vec{r}^{\prime} ; t-t_{0}\right)=-\frac{i}{\hbar}\langle\vec{r}| e^{-\frac{i}{\hbar} H\left(t-t_{0}\right)}\left|\vec{r}^{\prime}\right\rangle \quad \text { Recall Huygens' principle! }
$$

Alternative expressions

Using $\quad \theta\left(t-t_{0}\right)=-\int \frac{d E^{\prime}}{2 \pi i} \frac{e^{-\frac{i}{\hbar} E^{\prime}\left(t-t_{0}\right)}}{E^{\prime}+i \eta}$ and $\frac{d}{d t} \theta\left(t-t_{0}\right)=\delta\left(t-t_{0}\right)$
the Fourier transform of the propagator can be written as

$$
\begin{aligned}
G\left(\vec{r}, \vec{r}^{\prime} ; E\right) & =\int_{-\infty}^{\infty} d\left(t-t_{0}\right) e^{\frac{i}{\hbar} E\left(t-t_{0}\right)} G\left(\vec{r}, \vec{r}^{\prime} ; t-t_{0}\right) \\
& =\sum_{n} \frac{\langle 0| a_{\vec{r}}|n\rangle\langle n| a_{\vec{r}}^{+}|0\rangle}{E-\varepsilon_{n}+i \eta} \\
& =\langle 0| a_{\vec{r}} \frac{1}{E-H+i \eta} a_{\vec{r}}^{+}|0\rangle \quad \text { with } \quad H|n\rangle=\varepsilon_{n}|n\rangle
\end{aligned}
$$

Also $\quad\langle 0| a_{\vec{r}}|n\rangle=\langle\vec{r} \mid n\rangle=u_{n}(\vec{r})$
So numerator yields information on wave functions and denominator on eigenvalues of \boldsymbol{H}.

How is G calculated?

"Simple" for the case of one particle. Can proceed by splitting
$H=H_{0}+V$ and using the operator identity $\frac{1}{A-B}=\frac{1}{A}+\frac{1}{A} B \frac{1}{A-B}$
for the operator

$$
G=\frac{1}{E-H+i \eta} \quad \text { with } \quad A=E-H_{0}+i \eta
$$

and $\quad B=V \quad$ to obtain G in terms of $G^{(0)}$ and V :

$$
\begin{aligned}
G & =G^{(0)}+G^{(0)} V G \\
& =G^{(0)}+G^{(0)} V G^{(0)}+G^{(0)} V G^{(0)} V G^{(0)}+\cdots
\end{aligned}
$$

or in a particular basis

$$
G(\alpha, \beta ; E)=G^{(0)}(\alpha, \beta ; E)+\sum_{\gamma \delta} G^{(0)}(\alpha, \gamma ; E)\langle\gamma| V|\delta\rangle G(\delta, \beta ; E)
$$

with

$$
G(\alpha, \beta ; E)=\langle\alpha| \frac{1}{E-H+i \eta}|\beta\rangle
$$

Diagrams

Lowest order

All orders summed by

Single-particle propagator in the medium

Definition

$$
G\left(\alpha, \beta ; t-t^{\prime}\right)=-\frac{i}{\hbar}\left\langle\Psi_{0}^{N}\right| T\left[a_{\alpha_{H}}(t) a_{\beta_{H}}^{+}\left(t^{\prime}\right)\right]\left|\Psi_{0}^{N}\right\rangle
$$

with

$$
\hat{H}\left|\Psi_{0}^{N}\right\rangle=E_{0}^{N}\left|\Psi_{0}^{N}\right\rangle \quad \text { for the exact ground state }
$$

and

$$
a_{\alpha_{H}}(t)=e^{\frac{i}{\hbar} \hat{H} t} a_{\alpha} e^{-\frac{i}{\hbar} \hat{H} t} \quad \text { (Heisenberg picture) }
$$

while T orders the operators with larger time on the left including a sign change

$$
\begin{aligned}
G\left(\alpha, \beta ; t-t^{\prime}\right)=- & \frac{i}{\hbar}\left\{\theta\left(t-t^{\prime}\right) e^{\frac{i}{\hbar} E_{0}^{N}\left(t-t^{\prime}\right)}\left\langle\Psi_{0}^{N}\right| a_{\alpha} e^{-\frac{i}{\hbar} \hat{H}\left(t-t^{\prime}\right)} a_{\beta}^{+}\left|\Psi_{0}^{N}\right\rangle\right. \text { particle } \\
& \left.-\theta\left(t-t^{\prime}\right) e^{\frac{i}{\hbar} E_{0}^{N}\left(t^{\prime}-t\right)}\left\langle\Psi_{0}^{N}\right| a_{\beta}^{+} e^{-\frac{i}{\hbar} \hat{H}\left(t^{\prime}-t\right)} a_{\alpha}\left|\Psi_{0}^{N}\right\rangle\right\} \text { hole }
\end{aligned}
$$

Fourier transform of G (Lehmann representation)

$$
\begin{array}{rlr}
G(\alpha, \beta ; E) & =\sum_{m} \frac{\left\langle\Psi_{0}^{N}\right| a_{\alpha}\left|\Psi_{m}^{N+1}\right\rangle\left\langle\Psi_{m}^{N+1}\right| a_{\beta}^{+}\left|\Psi_{0}^{N}\right\rangle}{E-\left(E_{m}^{N+1}-E_{0}^{N}\right)+i \eta} & \leftarrow \text { Particle part } \\
& +\sum_{n} \frac{\left\langle\Psi_{0}^{N}\right| a_{\beta}^{+}\left|\Psi_{n}^{N-1}\right\rangle\left\langle\Psi_{n}^{N-1}\right| a_{\alpha}\left|\Psi_{0}^{N}\right\rangle}{E-\left(E_{0}^{N}-E_{n}^{N-1}\right)-i \eta} & \leftarrow \text { Hole part }
\end{array}
$$

Numerator contains information about "wave functions"

$$
\left\langle\Psi_{n}^{N-1}\right| a_{\alpha}\left|\Psi_{0}^{N}\right\rangle \quad \text { and } \quad\left\langle\Psi_{m}^{N+1}\right| a_{\beta}^{+}\left|\Psi_{0}^{N}\right\rangle
$$

while denominator identifies eigenvalues of H for the $N \pm 1$ states
Note

$$
\hat{H}\left|\Psi_{n}^{N \pm 1}\right\rangle=E_{n}^{N \pm 1}\left|\Psi_{n}^{N \pm 1}\right\rangle
$$

has been used for exact $N \pm 1$ states of H

Spectral functions

Probability density for the removal of a particle with quantum numbers represented by α from the ground state, while leaving the remaining system at an energy $\quad E_{n}^{N-1}=E_{0}^{N}-E$
$\left.S_{h}(\alpha ; E)=\sum_{n}\left|\left\langle\Psi_{n}^{N-1}\right| a_{\alpha}\right| \Psi_{0}^{N}\right\rangle\left.\right|^{2} \delta\left(E-\left(E_{0}^{N}-E_{n}^{N-1}\right)\right)$
for energies $\quad E \leq \varepsilon_{F}^{-}=E_{0}^{N}-E_{0}^{N-1}$
Relation of "hole" spectral function to propagator

$$
S_{h}(\alpha ; E)=\frac{1}{\pi} \operatorname{Im} G(\alpha, \alpha ; E) \quad \text { based on } \quad \frac{1}{x \pm i \eta}=P \frac{1}{x} \mp i \pi \delta(x)
$$

Occupation number: $\quad n(\alpha)=\int_{-\infty}^{\varepsilon_{F}^{-}} S_{h}(\alpha ; E) d E=\left\langle\Psi_{0}^{N}\right| a_{\alpha}^{\dagger} a_{\alpha}\left|\Psi_{0}^{N}\right\rangle$

Relation with experimental data

Direct knockout reaction:
Transfer a large amount of momentum and energy to a bound N -particle system leaving an ejected fast particle and a bound $N-1$ system. By observing the momentum of the ejected particle one can reconstruct the hole spectral function.

Initial state $\quad\left|\Psi_{i}\right\rangle=\left|\Psi_{0}^{N}\right\rangle \quad$ Final state $\quad\left|\Psi_{f}\right\rangle=a_{\vec{p}}^{+}\left|\Psi_{n}^{N-1}\right\rangle$
External probe transfers momentum $\quad \hat{\rho}(\vec{q})=\sum_{\vec{p}} a_{\vec{p}}^{+} a_{\vec{p}-\vec{q}}$
Transition matrix element

$$
\left\langle\Psi_{f}\right| \hat{\rho}(\vec{q})\left|\Psi_{i}\right\rangle \approx\left\langle\Psi_{n}^{N-1}\right| a_{\vec{p}-\vec{q}}\left|\Psi_{0}^{N}\right\rangle
$$

(Plane Wave) Impulse Approximation \Rightarrow ejected particle absorbs q Cross section from Fermi's Golden Rule

$$
\begin{aligned}
& \left.\qquad d \sigma \propto \sum_{n}\left|\left\langle\Psi_{f}\right| \hat{\rho}(\vec{q})\right| \Psi_{i}\right\rangle\left.\right|^{2} \delta\left(E+E_{i}-E_{f}\right)=S_{h}\left(\vec{p}_{\text {miss }} ; E_{\text {miss }}\right) \\
& \text { with } \quad \vec{p}_{\text {miss }}=\vec{p}-\vec{q} \quad \text { and } \quad E_{\text {miss }}=\frac{\vec{p}^{2}}{2 m}-E=E_{0}^{N}-E_{n}^{N-1}
\end{aligned}
$$

Basic idea of (e,2e) or (e, $e^{\prime} p$)

$\left.d \sigma_{L} \propto\left|\left\langle\Psi_{f}\right| \hat{\rho}_{c}(\vec{q})\right| \Psi_{i}\right\rangle\left.\right|^{2} \delta\left(E-E_{i}-E_{f}\right)$
Simplest case: $\left\langle\vec{p}, \Psi_{n}^{N-1}\right| \hat{\rho}_{c}(\vec{q})\left|\Psi_{0}^{N}\right\rangle \Rightarrow\left\langle\Psi_{n}^{N-1}\right| a_{\vec{p}-\vec{q}}\left|\Psi_{0}^{N}\right\rangle$
$\Rightarrow d \sigma_{L} \propto \sum_{n}\left\langle\Psi_{0}^{N}\right| a_{\vec{p}-\bar{q}}^{+}\left|\Psi_{n}^{N-1}\right\rangle\left\langle\Psi_{n}^{N-1}\right| a_{\bar{p}-\bar{q}}\left|\Psi_{0}^{N}\right\rangle \delta\left(E_{\text {miss }}-\left(E_{0}^{N}-E_{n}^{N-1}\right)\right)$
Realistic case : distorted waves / more realistic description of knocked out particle

Atoms studied with the (e,2e) reaction

$\varphi_{1 s}(p)=2^{3 / 2} \pi \frac{1}{\left(1+p^{2}\right)^{2}}$
Hydrogen 1s wave function
"seen" experimentally
Phys. Lett. 86A, 139 (1981)

And so on for other atoms ...

Helium
in Phys. Rev. A8, 2494 (1973)

Spectroscopic factors in atoms

For a bound final $N-1$ state the spectroscopic factor is given by $\left.\quad S=\int d \vec{p}\left|\left\langle\Psi_{n}^{N-1}\right| a_{\vec{p}}\right| \Psi_{0}^{N}\right\rangle\left.\right|^{2}$ For H and He the $1 s$ electron spectroscopic factor is 1 For Ne the valence $2 p$ electron has $S=0.92$ with two additional fragments, each carrying 0.04, at higher energy.

(e,ép) cross sections for closed-shell nuclei

NIKHEF data, L. Lapikás, Nucl. Phys. A553, 297c (1993)

Except

Removal probability for valence protons from NIKHEF data

Note:
We have seen mostly data for removal of valence protons

and ...

E. Quint, Ph.D.thesis NIKHEF, 1988

Quasihole strength or spectroscopic factor $Z\left(2 s_{1 / 2}\right)=0.65$

$$
\mathrm{n}\left(2 s_{1 / 2}\right)=0.75
$$

from elastic electron scattering Strong fragmentation deeply-bound states

Many-body perturbation theory for G

- Identify solvable problem by considering $\hat{H}_{0}=\hat{T}+\hat{U}$ where U is a suitable auxiliary potential.
- Develop expansion in $\hat{H}_{1}=\hat{V}-\hat{U}$
- Employs time-evolution, Heisenberg, Schrödinger, and interaction picture of quantum mechanics.
- Once established, this expansion (expressed in Feynman diagrams) is organized in such a way that nonperturbative results can be obtained leading to the Dyson equation. The Dyson equation describes sp motion in the medium under the influence of the self-energy which is an energy-dependent complex sp potential.
- Further insight into the proper description of sp motion in the medium is obtained by studying the relation between sp and two-particle propagation. This allows the selection of appropriate choices of the relevant ingredients for the system under study.

