
Spectroscopic factors and the physics of the single-
particle strength distribution in nuclei

Wim Dickhoff
Washington University in St. Louis

NSCL  7/18/05

Lecture 1: 7/18/05  Propagator description of single-particle motion and the
            link with experimental data

Lecture 2: 7/19/05  From diagrams to Hartree-Fock and spectroscopic factors < 1

Lecture 3: 7/20/05  Influence of long-range correlations and the relation to excited states

Lecture 4: 7/21/05  Role of short-range and tensor correlations associated with realistic 
 interactions. Prospects for nuclei with N very different from Z.

Lecture 5: 7/22/05  Saturation problem of nuclear matter



Some questions …
What does a nucleon do in the nucleus?

Is this a legitimate question?
Speculations …

How strong is the dependence on N and Z?
Energy scales: As high as a realistic VNN will take you

…
Δ-isobars, pions
…
As low as the first excited state

⇒ ALL OF THEM! HOW? 
⇒ Time-dependent formulation not surprising



How?
Method: Green’s functions (Propagators)

      Feynman diagrams

Why:       Physical insight and useful for all many-body systems
      Link between experiment and theory clear
      Can include all energy scales
      Efficient with information; generates amplitudes not wave functions

(Text)Book: Willem H Dickhoff & Dimitri Van Neck
     “Many-Body Theory Exposed!”
     Propagator description of quantum mechanics in many-body systems
     World Scientific (2005) 

Review:   WHD & Carlo Barbieri
     Prog. Part. Nucl. Phys. 52, 377-496 (2004)



Outline

• What is a propagator
• Propagator in the many-body problem
• Information contained in propagator
• Spectral functions
• Relation with experimental data
• Experimental results
• Outline of perturbation theory



What is a propagator or Green’s function?
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Time evolution is governed by the Hamiltonian H. For a single 
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Relation between wave function at t and t0 can then be written as
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with the propagator or Green’s function defined by

  

€ 

G(r r ,r r ';t − t0) = −
i
h

r r e
−

i
h

H ( t− t0 ) r r ' Recall Huygens’ principle!



Alternative expressions
Using
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the Fourier transform of the propagator can be written as
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So numerator yields information on wave functions 
and denominator on eigenvalues of H.



How is G calculated?
“Simple” for the case of one particle. Can proceed by splitting
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H = H0 +V and using the operator identity
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B =V to obtain G in terms of G(0) and V:
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Diagrams
Lowest order

First order

All orders summed by



Single-particle propagator in the medium
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a sign change 
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Fourier transform of G (Lehmann representation)
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⇐ Particle part

⇐ Hole part

Numerator contains information about “wave functions”
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Spectral functions
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Occupation number:
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Probability density for the removal of a particle with quantum
numbers represented by α from the ground state, while leaving
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Relation of “hole” spectral function to propagator
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Relation with experimental data
Direct knockout reaction: 
Transfer a large amount of momentum and energy to a bound N-particle system 
leaving an ejected fast particle and a bound N-1 system. By observing the momentum
of the ejected particle one can reconstruct the hole spectral function.

Initial state
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Ψi = Ψ0
N Final state
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External probe transfers momentum
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Transition matrix element
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(Plane Wave) Impulse Approximation ⇒ ejected particle absorbs q
Cross section from Fermi’s Golden Rule
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Basic idea of
(e,2e) or (e,e´p)

Simplest case:

Realistic case :   distorted waves / more realistic 
description of knocked out particle
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ϕ1s(p) = 23/ 2π 1
(1+ p2)2

Hydrogen 1s wave function
“seen” experimentally
Phys. Lett. 86A, 139 (1981)

And so on for other atoms …

Helium
in Phys. Rev. A8, 2494 (1973)

Atoms studied with the (e,2e) reaction



Spectroscopic factors in atoms
  

€ 

S = dr p Ψn
N−1 a r p Ψ0

N 2
∫For a bound final N-1 state the spectroscopic factor is given by 

For H and He the 1s electron spectroscopic factor is 1
For Ne the valence 2p electron has S=0.92 with two additional fragments, 
each carrying 0.04, at higher energy.

Argon
3p and 3s
strength

Closed-shell
atoms

n(α) = 0 or 1 



(e,e´p) cross sections for closed-shell nuclei
NIKHEF data, L. Lapikás, Nucl. Phys. A553, 297c (1993)

Except ….



RemovalRemoval
probability forprobability for

valence protonsvalence protons
fromfrom

NIKHEF dataNIKHEF data

Note:
We have seen mostly
data for removal of
valence protons



and …

Strong fragmentation of
deeply-bound states

E. Quint, Ph.D.thesis NIKHEF, 1988

Quasihole strength or
spectroscopic factor Z(2s1/2) =0.65

n(2s 1/2) = 0.75
from elastic electron scattering

Intermediate



Many-body perturbation theory for G
• Identify solvable problem by considering

€ 

ˆ H 0 = ˆ T + ˆ U 
where U is a suitable auxiliary potential.

• Develop expansion in 

€ 

ˆ H 1 = ˆ V − ˆ U 

• Employs time-evolution, Heisenberg, Schrödinger, and 
   interaction picture of quantum mechanics.
• Once established, this expansion (expressed in Feynman diagrams)
   is organized in such a way that nonperturbative results can be
   obtained leading to the Dyson equation. The Dyson equation
   describes sp motion in the medium under the influence of the
   self-energy which is an energy-dependent complex sp potential.
• Further insight into the proper description of sp motion in the
   medium is obtained by studying the relation between sp and
   two-particle propagation. This allows the selection of appropriate
   choices of the relevant ingredients for the system under study.


