
Physics 411
Homework # 9

Due: 04.06.2018 Mechanics I

1. Problem 9.15 from Taylor

SOLUTION - We start describing gravity as follows:

g = g0 + (Ω×R)×Ω (1)

where the second termon the right hand side is the centrifugal acceleration. In spherical
coordinates, we can write R = (R sin θ cosφ,R sin θ sinφ,R cos θ) and Ω = (0, 0,Ω). Thus
we have

Ω×R =

∣∣∣∣∣∣
x̂ ŷ ẑ
0 0 Ω

R sin θ cosφ R sin θ sinφ R cos θ

∣∣∣∣∣∣ (2)

= ΩR sin θ cosφŷ − ΩR sin θ sinφx̂ (3)

and

(Ω×R)×Ω =

∣∣∣∣∣∣
x̂ ŷ ẑ

−ΩR sin θ sinφ ΩR sin θ cos θ 0
0 0 Ω

∣∣∣∣∣∣ (4)

= Ω2R sin θ(cosφx̂ + sinφŷ) (5)

With this expression, the gravity of the planet can be written as

g = g0 + Ω2R sin θ(cosφx̂ + sinφŷ) (6)

and its magnitude is

|g| =
√
g20 + Ω4R2 sin2 θ (7)

Now we apply the two conditions given by the problem: The first one, g(0) = g0 is already
satisfied by equation 7. Now for g(90) = λg0,

λg0 =
√
g20 + Ω4R2 (8)

λ2g20 = g20 + Ω4R2 (9)

(λ2 − 1)g0 = Ω4R2 (10)

Back to equation 7:

g =
√
g20 + (λ2 − 1)g20 sin2 θ (11)

= g0
√

1 + λ2 sin2 θ − sin2 θ (12)

= g0
√

cos2 θ + λ2 sin2 θ (13)

2. Problem 9.19 from Taylor
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(a) SOLUTION - For an observer in the inertial frame there are no forces acting on the
puck and therefore they will see it moving in a straight line, tangential to the circular
motion of the meery go round.
For an observer in the nonintertial frame, te puck is initially at rest and the only force
acting on it is the centrifugal force. After some time, the puck will have some velocity,
meaning that there will be also a Corriolis force acnting on it. The Corriolis force is
always perpendicular to the velocity and deflects the puck to the right, as the centrifu-
gal force is always radial, creating a outward spiral path.

(b) SOLUTION - For an observer in the inertial frame, again there are no forces acting
on the puck so after it hits the merry go round it remains stationary.
For an observer in the nonintertial frame, the puck is moving in a circle with angular
velocity equals to −Ω as a result of the forces acting on it:

FCorriolis = 2mṙ×Ω (14)

= 2mr(−Ωθ̂)× Ωẑ (15)

= −2mrΩ2r̂ (16)

Fcentrifugal = mΩr(x̂× r̂)× Ωẑ (17)

= mrΩ2r̂ (18)

Ftotal = −mrΩ2r̂ (19)

3. Problem 9.26 from Taylor

SOLUTION - Starting from the equation 9.53 and setting Ω = 0, we have

ẋ = vox (20)

ẏ = voy (21)

ż = voz − gt (22)

Now back to equation 9.53 we find the equation of motion for each component:

ẍ = 2Ω [voy cos θ − (voz − gt) sin θ] (23)

ẋ = 2Ωt

[
voy cos θ − voz sin θ +

1

2
gt2
]

+ vox (24)

x = Ωt2(voy cos θ − voz sin θ) +
1

3
Ωgt3 sin θ + voxt (25)

ÿ = −2Ωvox cos θ (26)

ẏ = −2Ωvoxt cos θ (27)

y == Ωvoxt
2 cos θ + voy (28)
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z̈ = −g + 2Ωvox sin θ (29)

ż = −gt+ 2Ωtvox sin θ (30)

z = −1

2
gt2 + Ωt2vox sin θ + voz (31)

4. Problem 10.6 from Taylor

SOLUTION - Given its symmetry, we know that XCM = YCM = 0. So we only need to
calculate ZCM :

ZCM =

∫
zdV

V
(32)

Calculating the integral we have

Z =

∫ b

a

∫ π/2

0

∫ 2π

0

(r cos θ)r2 sin θdφdθdr (33)

=

∫ b

a

r3dr

∫ π/2

0

cos θ sin θdθ

∫ 2π

0

dφ (34)

= (2π)

(
1

2

)∫ b

a

r3dr (35)

= π

(
1

4
r4
∣∣∣b
a

)
=
π

4
(b4 − a4) (36)

Since the volume of a hemispherical shell is
2π

3
(b3−a3), from equation 32 we have our answer

zCM =
π
4
(b4 − a4)

2π
3

(b3 − a3)
=

3

8

(b4 − a4)
(b3 − a3)

. (37)

SOLUTION - For the case where a = 0, we have a solid hemisphere and from equation 37
it’s straightforward to find ZCM :

ZCM =
3b

8
(38)

SOLUTION - For the case where b approaches a, we need to calculate the following limit
using the L’opital rule

lim
b→a

b4 − a4

b3 − a3
=

4b

3
(39)

Therefore we have

ZCM =
3

8

(
4b

3

)
=
b

2
(40)
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