
Physics 411
Homework # 6

Due: 03.02.2018 Mechanics I

1. A wedge of mass M moves on a horizontal surface. A block of mass m slides down the
wedge (see Fig. 7.8 of Taylor’s book). Suppose that the wedge has a given motion, x = 1

2
at2

(a is a fixed constant), imposed upon it.

(a) Set up the equations of motion using Newtonian mechanics and determine the con-
straint force Fcstr between the wedge and the block. Work in the given inertial coor-
dinate system.

Figure 1: Problem 1

SOLUTION - We start this problem decomposing the forces that are acting on the
block into parallel and perpendicular to the wedge components. By Newton’s second
law, the sum of the forces should be equal to the resulting one, meaning:∑

F⊥ = ma⊥ (1)

Fcstr−mg cosα = ma sinα (2)

Note that our constraint force in this problem is equivalent to the normal force, given
by equation (2). In a similar way, to find the equation of motion for the block, we
write the parallel component of the forces, taking into account that the wedge and the
block are moving together - there’s no relative acceleration∑

F‖ = ma‖ = 0 (3)

mg sinα = ma cosα (4)

q̈1 = g sinα− a cosα (5)

To check this answer: if a cosα > g sinα, meaning the plane has a higher parallel
acceleration than the block, q̈1 < 0 and the block will slide up the plane.

(b) Set up the equations of motion using Lagrangian methods, with generalized coordinate
q1. Again, check that the equation of motion for q̈1 is the same as in part a).
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SOLUTION - Using the Lagrangian method, we rewrite the Cartesian coordinates x
and y in terms of the generalized ones for the block only:

x = q2 + q1 cosα→ ẋ = at+ q̇1 cosα (6)

y = −q1 sinα→ ẏ = −q̇1 sinα (7)

With this new definitions we can write the kinectic and potential energies:

T =
1

2
m(ẋ2 + ẏ2) =

1

2
(a2t2 + 2atq̇1 cosα + q̇1

2) (8)

U = mgy = −mgq1 sinα (9)

And from the Lagrangian L = T − U we get the same equation of motion for q1, as
expected:

ma cosα +mq̈1 = mg sinα (10)

q̈1 = g sinα− a cosα (11)

2. A particle of mass m moves freely over the surface of the sphere with Lagragian

L =
1

2
m

(
ds

dt

)2

=
1

2
mR2(θ̇2 + sin2(θ)φ̇2). (12)

Show that the Lagrangian and the quantity pφ = mR2 sin2(θ)φ̇ are constants of the motion
- they are conserved - and give a physical interpretation.

SOLUTION - To prove that the generalized momentum is conserved we look at the Euler-
Lagrange equation for φ:

∂L

∂φ
= 0→ d

dt

∂L

∂φ̇
= 0 (13)

Therefore
d

dt
(mR2sin2θφ̇) = 0→ mR2 sin2 θφ̇ = const. (14)

And for the Lagrangian we calculate its total time derivative,

dL

dt
= θ̇

∂L

∂θ
+ θ̈

∂L

∂θ̇
+ φ̇

∂L

∂φ
+ φ̈

∂L

∂φ̇
. (15)

From the right hand side we have:

∂L

∂θ
= mR2 sin θ cos θφ̇2 (16)

∂L

∂θ̇
−mR2θ̇ (17)

∂L

∂φ̇
= mR2 sin2 θφ̇ (18)
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And from the equation of motion for θ

mR2 sin θ cos θφ̇ = mR2θ̈ (19)

Back to dL/dt:

dL

dt
= (mR2 sin θ cos θφ̇2 +mR2θ̈)θ̇ +mR2 sin2 θφ̇φ̈ (20)

= mR2φ̇(2 sin θ cos θφ̇θ̇ + sin2 θφ̈) (21)

= mR2φ̇
dL

dt

∂L

∂φ̇
= 0 (22)

Given that the Lagrangian does not depend on the φ coordinate, we have that the generalized
momentum associated with this coordinate pφ is conserved, and here it represents the z
component of the angular momentum of the particle. Also, because the Lagrangian does not
have an explicit dependence on time, we have that this system conserves its total energy.

3. Determine the degrees of freedom, the kinetic energy, the generalized forces and the
equations of motion (you don’t need to solve them!) for the following systems in a constant
gravitational field:

(a) The double Atwood machine.

SOLUTION - At first, it’s possible to identify 4 different coordinates to describe
this system. However, a second look reveals that there are 2 constraints that reduce
the number of generalized coordinates in half:

x1 + x4 = l1//x2 + x3 = l2 (23)

where l1 and l2 are the lenghts of the strings on each machine. Choosing x1 and x2 as
the two degrees of freedom to describe the motion, we can write

ẋ1 = −ẋ4ẋ2 = −ẋ3 (24)

and the kinectic and potential energy are given by:

T =
1

2
m1v

2
1 +

1

2
m2v

2
2 +

1

2
m3v

2
3 (25)

=
1

2
m1ẋ1

2 +
1

2
m2(ẋ2 − ẋ1)2 +

1

2
m3(−ẋ2 − ẋ1)2 (26)

=
1

2
ẋ1

2(m1 +m2 +m3) +
1

2
ẋ2

2)(m2 +m3) + ẋ1ẋ2(m3 −m2) (27)

U = −m1gx1 −m2g(x2 + x4)−m3g(x3 + x4) (28)

= m1gx1 −m2g(x2 − l1 − x1)−m3g(l2 − x2 + l1 − x1) (29)

= −gx1(m1 −m2 −m3)− gx2(m2m3) + constants (30)
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Thus its Lagragrangian is

L =
1

2
ẋ1

2(m1+m2+m3)+
1

2
ẋ2

2(m2+m3)+ẋ1ẋ2(m3−m2)+gx1(m1−m2−m3)+gx2(m2−m3)

(31)
Now, for each coordinate we calculate its Euler-Lagrange equation, starting with x1:

∂L

∂ẋ1
= ẋ1(m1 +m2 +m3) + ẋ2(m3 −m2) (32)

∂L

∂x1
= g(m1 −m2 −m3) (33)

(m1 +m2 +m3)ẍ1 + (m3 −m2)ẍ2 = g(m1 −m2 −m3) (34)

And for x2:

∂L

∂ẋ2
= ẋ2(m2 +m3) + ẋ1(m3 −m2) (35)

∂L

∂x2
= g(m2 −m3) (36)

(m2 +m3)ẍ2 = g(m2 −m3)− (m3 −m2)ẍ1 (37)

(b) A mass hanging from a spring with constant k

SOLUTION - Considering only one degree of freedom, the coordinate y, we have:

L =
1

2
mẏ2 − 1

2
ky2 +mgy (38)

and its equation of motion is given by

∂L

∂ẏ
= mẏ (39)

∂L

∂y
= −ky +mg (40)

ÿ +
k

m
y = mg (41)
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Figure 2: Problem 3a)

Figure 3: Problem 3b)
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