
Physics 411
Homework # 5

Due: 02.23.2018 Mechanics I

1. In many problems in the calculus of varioations, one needs to determine the lenght ds of
a short segment of a curve on a surface (see Eq. (6.1) in the book). Determine ds for the
following situations:

(a) Curve given by y = y(x) in a plane

SOLUTION - We always start from Cartesian coordinates, for all parts. For a)
and b) it’s straight forward:

dy =
dy

dx
dx = y′(x)dx (1)

ds =
√

dx2 + dy2 =
√

1 + [y′(x)]2dx (2)

(b) As in a) but x = x(y).

SOLUTION - Again, just calculate ds:

dx =
dx

dy
dy = x′(y)dy (3)

ds =
√

[x′(y)]2 + 1dy (4)

(c) As in a) but r = r(φ).

SOLUTION - We first make the transformation from Cartesian coordinates to polar
coordinates:

x = r cosφ→ dx = −r sinφdφ+ cosφdr (5)

y = r sinφ→ dy = r cosφdφ+ sinφdr (6)

Plugging into ds:

ds2 = r2dφ2(sin2 φ+ cos2 φ) + dr2(cos2 φ+ sin2 φ) (7)

ds =
√
r2 + r′2dφ (8)

(d) As in a) but φ = φ(r).

SOLUTION - Using the result from equation 8, we only have to rewrite φ:

φ(r) : dr2
[
r2
(

dφ

dr

)
+ 1

]
(9)

ds =
√
r2φ′2 + 1dr (10)

(e) Curve given by φ = φ(z) on a cylinder of radius R.
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SOLUTION - In this new coordinate system we add z as an extra variable, and
set r = R, meaning dr = 0:

x = r cosφ→ dx = −R sinφdφ (11)

y = r sinφ→ dy = R cosφdφ (12)

z = z → dz = dz (13)

Thus, ds is

ds =
√
R2dφ2(sin2 φ+ cos2 φ) + dz2 (14)

=
√
R2dφ2 + dz2 (15)

Using that φ = φ(z)

ds =
√
R2φ′2 + 1dz (16)

(f) As in e) but z = z(φ).

SOLUTION - Starting from equation 14:

ds =
√

dφ2[R2 + (dz/dφ)2] (17)

=
√
R2 + z′2dφ (18)

(g) Curve given by θ = θ(φ) on a sphere of radius R.

SOLUTION - Here we transform x, y and z into r, φ and θ, taking into account
that r = R and dr = 0:

x = r cosφ sin θ → dx = −R sinφ sin θdφ+R cosφ cos θdθ (19)

y = r sinφ sin θ → dy = R cosφ sin θdφ+R sinφ cos θdθ (20)

z = r cos θ → dz = −R sin θdθ (21)

Resulting in a ds equal to

ds2 = R2 sinθ dφ2(sin2 φ+ cos2 φ) +R2 cos2 θdθ2(cos2 φ+ sin2 φ) +R2 sin2 θdθ (22)

= R2 sin2 θdφ2 +R2 cos2 θdθ2 +R2 sin2 θdθ2 (23)

= R2 sin2 θdφ2 +R2dθ2 (24)

→ ds =
√
R2dφ2[sin2 θ + (dθ/dφ)2] (25)

ds =
√

sin2 θ + θ′2Rdφ (26)

(h) As in g) but φ = phi(θ).
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SOLUTION - From equation 24:

ds =

√
R2 sin2 θdφ2 +R2dθ2 (27)

=
√

dθ2[R2 sin2 θ(dφ/dθ)2 +R2] (28)

=

√
sin2 θφ′2 + 1Rdθ (29)

2. The shortest path between two points on a curved surface, such as the surface of a sphere
is called a geodesic. To find a geodesic, one finds the curve that makes the path lenght
stationary. In a plane, we saw that ds =

√
dx2 + dy2 =

√
1 + y′2dx.

(a) Use spherical polar coordinates (r, θ, φ) to show that the lenght of the path joining two
points on a sphere of radius R is

L = R

∫ θ2

θ1

√
1 + sinθ φ′2dθ. (30)

SOLUTION - From part h) in the previous problem we have ds as a function of
θ, thus the lenght between two points can be written as

L =

∫ p2

p1

= R

∫ θ2

θ1

√
1 + sinθ φ′2dθ (31)

(b) Prove that the geodecis between two given points on a sphere is a great circle. Note
that the integrand above is independent of φ, so the Euler-Lagrange equations reduce
to ∂f/∂φ′ = C, where C is a constant. You can always choose your z axis to pass
through the point 1, which will allow you to show that C = 0 in this case. Describe
the corresponding geodesics (Note that with this choice of axez, the point 1 is at the
North pole.)

SOLUTION - we have an integral of the form

S =

∫ x2

x1

f [y(x), y′(x), x]dx (32)

and in our case S is the lenght we want to minimize with an integrand equal to
ds = ds(φ′(θ), θ). The condition to ensure that L is minimized is

∂f

∂φ︸︷︷︸
= 0

− d

dθ

∂f

∂φ′ = 0 (33)

which gives
sin2 θφ′

(1 + sin2 θφ′2)
= C (34)
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This equation is valid for any θ: choosing a coordinate system that the z-axis pass
through point 1 means that for θ1 this expression is equal to zero

sin2(0)φ′2

(1 + sin2(0)φ′2)
= 0 (35)

Thereforre C = 0 for all values of θ. The only way for equation 34 be true for any φ
and θ is that we have φ′ = 0 which means φ is a constant. On a sphere, keeping φ
constant means that the only degree of freedom is θ, so the shortest path between two
points in it is a great circle.

3. A pendulum bob of mass m is suspended by a string of lenght l from a point of support.
The point of support moves back and forth along the horizontal x-axis according to the
equation x = a cos(ωt), with a a constant. Assujme that the pendulum’s position remains
in the x-z plane (z is vertical), and describe the pendulum’s position by the angle θ that the
string makes with the vertical.

(a) Set up the Lagragian, and from it find the equation of motion, using the single gener-
alized coordinate θ.

SOLUTION - For any problems with generalized coordinates, the reference frame will
determine how we transform for Cartesian to the new system. Regardless of choice,
the equation of motion should be the same since we’re describing the same problem.
Defining x and z in terms of θ:

x(t) = a cos(ωt) + l sin(θ)→ ẋ(t) = −a sin(ωt) + lθ̇ cos(ωt) (36)

z(t) = −l cos(θ)→ lθ̇ sin(θ) (37)

(Note that θ is a fuction of time!) With these definition we can write the potential and
kinectic energy for this system:

U = mgz = −mgl cos(θ) (38)

T =
1

2
m(ẋ2 + ż2) =

1

2
m(a2ω2 sin2(ωt) + l2θ̇2 − 2aωlθ̇ sin(ωt) cos(θ)) (39)

and its Lagrangian

L =
1

2
m(a2ω2 sin2(ωt) + l2θ̇2 − 2aωlθ̇ sin(ωt) cos(θ)) +mgl cos(ωt) (40)

To find the equation of motion for θ we need to calculate the following derivatives:

∂L

∂θ
= ml sin(θ)(aωθ̇ sin(ωt)− g) (41)

∂L

∂θ̇
= ml2θ̇ −maωl sin(ωt) cos(θ) (42)

d

dt

∂L

∂θ
= ml2θ̈ −maω2l cos(ωt) cos(θ) +maωlθ̇ sin(ωt) sin(θ) (43)

which gives the Euler-Lagrange equation

ml2θ̈ +mgl sin(θ)−maω2l cos(ωt) cos(θ) = 0 (44)
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(b) Show that, for small values of θ, the equation reduces to that of a driven harmonic
oscillator and find the corresponding steady state motion.

SOLUTION - From the Taylor’s series approximation, we have that for small an-
gles, equation 44 can be simplified to

ml2θ̈ +mglθ −maω2l cos(ωt) = 0 (45)

θ̈ + ω2
0θ =

aω2

l
cos(ωt) (46)

where we recognized the natural frequency of this system, ω2
0 = g/l. Now that we

have the equation for a driven harmonic oscillator, it’s possible to find its steady state
solution starting with guess such as θ(t) = θ0 cos(ωt). Plugging this expression into
the equation of motion we obtain

−ω2θO cos(ωt) + ω2
0θ0 cos(ωt) =

a

l
ω2 cos(ωt) (47)

(ω2
0 − ω2)θ0 =

a

l
ω2 → θ0 =

a

l

ω2

ω2
0 − ω2

(48)

and finally we have

θ(t) =
a

l

ω2

ω2
0 − ω2

cos(ωt) (49)

(c) Comment on the use of such a device as a seismograph to sense horizontal oscillations
of the Earth surface. Given the choice, would it be better to have the pendulums
natural frequency much greater or much less than the typical vibrational frequencies
of the Earth?

SOLUTION - If ω0 � ω,

θ(t) ≈ a

l

ω2

ω2
0

cos(ωt) (50)

which means the amplitude would be very small and also dependent on ω. Not what
we are looking for in a seismograph. On the other hand, if ω � ω0,

θ(t) ≈ a

l
cos(ωt) (51)

which gives us an amplitude that is independent of ω(Earth’s frequency) and has a
clear relation with it through a well behaved function, making it accurate for a seis-
mograph set up.
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