
Physics 411
Homework # 4

Due: 02.16.2018 Mechanics I

1. At time t = 0, a particle moving in a simple harmonic motion has x = 2
√

3, ẋ = 6, and
ẍ = −18

√
3.

(a) Write an expression for the motion of the form x = Re(Aeiωt), where A is a complex
number.

SOLUTION - Using the expression given for x(t) we can use the initial conditions to
determine A and ω:

x(0) = Re(A) = 2
√

3 (1)

ẋ(0) = ωRe(iA) = 6 (2)

ẍ(0) = −ω2Re(A) = −18
√

3 (3)

Writing A = a+ib, from equation 1 we have that A = 2
√

3+ib. With this information,
we can find ω directly from equation 3,

2
√

3ω2 = 18
√

3 → ω = 3. (4)

Now, pluggling these values to equation 2 we have

ωRe(iA) = 6 → Re(iA) = 2 (5)

iA = ia− b → Re(iA) = −b = 2 (6)

Putting all together we have x(t) = Re[(2
√

3− 2i)e3it]

(b) Write an expression for the motion of the form x = A cos(ωt− φ), where A and φ are
real.

SOLUTION - Using the same approach we find

x(0) = A cosφ = 2
√

3 (7)

ẋ(0) = ωA sinφ = 6 (8)

ẍ(0) = −ωA cosφ = −18
√

3 (9)

Dividing equation 7 by 9 we find that ω = 3, as before. From equation 7 and 8 we
have

A sinφ = 2 and A cosφ = 2
√

3 (10)

A2(sin2 φ+ cos2 φ) = 16→ A = 4 (11)

Lastly we can determine φ:

12 sinφ = 6→ φ = π/6 (12)

adn write out x(t) = 4 cos(3t− π/6) .
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(c) Represent A expiωt as a rotating vector in the complex plane. Draw a diagram showing
its position at t = 0, t = π/18, t = 2π/9, and t = π/3.

SOLUTION - We can represent x(t) = 4 cos(3t− π/6) in a complex plane using
its magnitude and corresponding angle as follows:

x(0) = 4 cos(−π/6) = 2
√

3 (13)

x(π/18) = 4 cos(0) = 4 (14)

x(2π/9) = 4 cos(3π/6) = 0 (15)

x(π/3) = 4 cos(5π/6) = −2
√

3 (16)

t=0

t=pi/18

t=2pi/9

t=pi/3

2. A particle of mass m undergoes damped oscillations with damping coefficient β and
natural frequency ω0(ω0 � β). At t = 0, it starts at x = A with ẋ = 0.

(a) Calculate the kinectic energy, potential energy, and total energy as functions of time.

SOLUTION - Starting from a general solution for damped oscillations x(t) = Ce−βt cos(ω1t− δ),
we apply the initial conditions to determine the constants C and δ:

x(0) = A → cos δ = A/C (17)

ẋ(0) = 0→ sin δ =
β

ω1

cos δ =
βA
ω1C

(18)

Using that cos δ2 + sin δ2 = 1, we find that

C = A

√
1 +

(
β

ω1

)2

(19)
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and because this is a damped osclliation, we have ω0 � β, which implies that ω1 ≈ ω0

and the expression for C can be simplified to just being equal to A. Therefore this
system can be described in terms of

x(t) = Ae−βt cos(ω1t− δ). (20)

With this expression it’s possible to calculate its potential and kinectic energy:

U =
1

2
kx2 =

1

2
mω2

0A2e−2βt cos2(ω1t− δ) (21)

T =
1

2
mẋ =

1

2
mA2e−2βt[β cos(ω1t− δ) + ω1 sin(ω1t− δ)]2

=
1

2
mA2e−2βt[β2 cos2(ω1t− δ) + ω2

1 sin2(ω1t− δ) + 2βω1 cos(ω1t− δ) sin(ω1t− δ)]
(22)

and total energy E, where three expressions were used to obtain its final form: ω2
1 =

ω2
0 − β2, cos2 θ + sin2 θ = 1 and sin(2θ) = 2 cos θ sin θ:

E =
1

2
mA2e−2βt{ω2

0 + β2[cos2(ω1t− δ)− sin2(ω1t− δ)] + βω1 sin(ω1t− δ)} (23)

(b) What is the average total energy (average over one cycle)? [Hint: Since ω0 � β,
one may assume that exp−βt stays relatively constant over one cycle. Then the av-
erage energy can be found by averaging only those terms that contain ω1t. Answer:
E ≈ 1

2
mω0A

2 exp−2βt.]

SOLUTION - Averaging terms with ωt - we can ignore δ because it’s a constant
phase shift and it won’t change the average value. Starting with cos2(ωt):

〈cos2(ωt)〉 =

〈
1 + cos(ωt)

2

〉
=

1

2
+

1

2

[
1

T

∫ T

0

cos(ωt)dt

]
(24)

=
1

2
+

1

2

[
1

T
sin(ωt)

∣∣∣2π/ω
0

]
=

1

2
(25)

and the same result can be calculated for 〈sin2(ωt)〉 = 1/2. Given that the integral of
a periodic function over its period is zero, we have that 〈sin(2ωt)〉 = 0; then we can
write that the average total energy of this system is

〈E〉 =
1

2
mA2e−2βt

[
ω2
0 + β2(

1

2
− 1

2
) + βω1(0)

]
=

1

2
mω2

0A2e−2βt (26)

3. When a body is suspended from a fized point by a certain linear spring (i.e. obeying
Hooke’s law), the natural frequency of its vertical oscillations is found to be ω1. When a
different linear spring is used, the oscillations have angular frequency ω2.
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(a) Find the angular frequency when the two springs are used together in parallel.

SOLUTION - In this case the displacement is the same fo both springs, thus

F = −k1x1 − k2x2 = − (k1 + k2)︸ ︷︷ ︸
k-parallel

x (27)

With this expression for kparallel we can write ωparallel

ωparallel =

√
kparallel
m

=

√
k1 + k2
m

(28)

ωparallel =
√
ω2
1 + ω2

2 (29)

(b) Repeat the calculation when they are used in series.

SOLUTION - In this case the total displacement is the sum of the displacements
of each spring

F = −kseries(x1 + x2) (30)

Because the force on each spring has to be equal, we have

F12 = F21 → −k1x1 = −k2x2 → x1 =
k2
k1
x2 (31)

F = F21 → −kseries
(
k2
k1

+ 1

)
= −k2x2 (32)

kseries =
k1k2
k1 + k2

(33)

Therefore we have

ωseries =

√
kseries
m

=
ω1ω2√
ω2
1 + ω2

2

(34)

(c) Show that the first of these frequencies is at least twice the second.

SOLUTION - The ratio between ωparallel and ωseries is

ωp
ωs

=
ω2
1 + ω2

2

ω1ω2

+
2ω1ω2

ω1ω2

− 2ω1ω2

ω1ω2︸ ︷︷ ︸
completing the square

=
(ω2

1 − ω2
2)2

ω1ω2

+ 2 (35)

Since ω1ω2 is always greater than zero, we can see that ωp/ωs has to be always greater
than 2.

4



4. The position of an overdamped harmonic oscillator is given by Eq. (5.40) in the text.

(a) Find the constants C1 and C2 in terms of the initial position x0 and velocity v0.

SOLUTION - We use the general solution for an overdamped harmonic oscillator,
given by

x(t) = C1e
−(β−
√
β2−ω2

0)t + C2e
−(β+
√
β2−ω2

0)t (36)

From the initial conditions,

C1 + C2 = x0 → C2 = x0 − C − 1 (37)

−(β −
√
β2 − ω2

0)C1 − (β +
√
β2 − ω2

0)C2 = v0 (38)

From equation 37:

2
√
β2 − ω2

0C1 −
(
β +

√
β2 − ω2

0

)
= v0 (39)

C1 =
v0 + (β +

√
β2 − ω2

0)x0

2
√
β2 − ω2

0

(40)

and therefore

C2 = x0 −

[
v0 + (β +

√
β2 − ω2

0)x0

2
√
β2 − ω2

0

]
= −(β −

√
β2 − ω2

0)x0 − v0
2
√
β2 − ω2

0

(41)

(b) Plot the resulting x(t) for the two cases that v0 = 0 and x0 = 0.

SOLUTION - For v0 = 0, we have

x(t) =
β +

√
β2 − ω2

0

2
√
β2 − ω2

0

x0e
−(β−
√
β2−ω2

0)t − (β −
√
β2 − ω2

0)x0

2
√
β2 − ω2

0

e−(β+
√
β2−ω2

0)t (42)

Meaning that after it’s released, the overdamped HO returns to its equilibrium position
as t→∞.
For the other case where x0 = 0,

x(t) =
v0

2
√
β2 − ω2

0

e−(β−
√
β2−ω2

0)t − v0

2
√
β2 − ω2

0

e−(β+
√
β2−ω2

0) (43)

This time, after the initial “kick” the system moves to a maximum displacement and
then returns to its equilibruim position as t→∞.
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v0 = 0 x0 = 0

(c) Show that for β → 0 your solution in a) approaches the solution for undamped motion.

SOLUTION - Starting with the original expression for x(t):

lim
β→0

= C1e
−(β−
√
β2−ω2

0)t + C2e
−(β+
√
β2−ω2

0)t ≈ C1e
√
−ω2

0t + C2e
−
√
ω2
0t (44)

x(t) = C1e
iω0t + C2e

−iω0t (45)

which is the solution for the undamped harmonic oscillator. Also, for β → 0, C1 = C2∗
so we can write

x(t) =
x0
2

(
eiωt + e−iωt

)
+

v0
2iω

(
eiωt − e−iωt

)
(46)

= x0 cos(ωt) +
v0
ω

sin(ωt) (47)
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