1. At time $t=0$, a particle moving in a simple harmonic motion has $x=2 \sqrt{3}, \dot{x}=6$, and $\ddot{x}=-18 \sqrt{3}$.
(a) Write an expression for the motion of the form $x=\operatorname{Re}\left(\mathcal{A} e^{i \omega t}\right)$, where \mathcal{A} is a complex number.

SOLUTION - Using the expression given for $x(t)$ we can use the initial conditions to determine \mathcal{A} and ω :

$$
\begin{align*}
& x(0)=\operatorname{Re}(\mathcal{A})=2 \sqrt{3} \tag{1}\\
& \dot{x}(0)=\omega \operatorname{Re}(i \mathcal{A})=6 \tag{2}\\
& \ddot{x}(0)=-\omega^{2} \operatorname{Re}(\mathcal{A})=-18 \sqrt{3} \tag{3}
\end{align*}
$$

Writing $\mathcal{A}=a+i b$, from equation 1 we have that $\mathcal{A}=2 \sqrt{3}+i b$. With this information, we can find ω directly from equation 3 ,

$$
\begin{equation*}
2 \sqrt{3} \omega^{2}=18 \sqrt{3} \rightarrow \omega=3 \tag{4}
\end{equation*}
$$

Now, pluggling these values to equation 2 we have

$$
\begin{align*}
\omega \operatorname{Re}(i \mathcal{A})=6 & \rightarrow \operatorname{Re}(i \mathcal{A})=2 \tag{5}\\
i \mathcal{A}=i a-b & \rightarrow \operatorname{Re}(i \mathcal{A})=-b=2 \tag{6}
\end{align*}
$$

Putting all together we have $x(t)=\operatorname{Re}\left[(2 \sqrt{3}-2 i) e^{3 i t}\right]$
(b) Write an expression for the motion of the form $x=\mathcal{A} \cos (\omega t-\phi)$, where \mathcal{A} and ϕ are real.

SOLUTION - Using the same approach we find

$$
\begin{align*}
& x(0)=\mathcal{A} \cos \phi=2 \sqrt{3} \tag{7}\\
& \dot{x}(0)=\omega \mathcal{A} \sin \phi=6 \tag{8}\\
& \ddot{x}(0)=-\omega \mathcal{A} \cos \phi=-18 \sqrt{3} \tag{9}
\end{align*}
$$

Dividing equation 7 by 9 we find that $\omega=3$, as before. From equation 7 and 8 we have

$$
\begin{array}{r}
\mathcal{A} \sin \phi=2 \text { and } \mathcal{A} \cos \phi=2 \sqrt{3} \\
\mathcal{A}^{2}\left(\sin ^{2} \phi+\cos ^{2} \phi\right)=16 \rightarrow \mathcal{A}=4 \tag{11}
\end{array}
$$

Lastly we can determine ϕ :

$$
\begin{equation*}
12 \sin \phi=6 \rightarrow \phi=\pi / 6 \tag{12}
\end{equation*}
$$

adn write out $x(t)=4 \cos (3 t-\pi / 6)$
(c) Represent $\mathcal{A} \exp ^{i \omega t}$ as a rotating vector in the complex plane. Draw a diagram showing its position at $t=0, t=\pi / 18, t=2 \pi / 9$, and $t=\pi / 3$.

SOLUTION - We can represent $x(t)=4 \cos (3 t-\pi / 6)$ in a complex plane using its magnitude and corresponding angle as follows:

$$
\begin{align*}
x(0) & =4 \cos (-\pi / 6)=2 \sqrt{3} \tag{13}\\
x(\pi / 18) & =4 \cos (0)=4 \tag{14}\\
x(2 \pi / 9) & =4 \cos (3 \pi / 6)=0 \tag{15}\\
x(\pi / 3) & =4 \cos (5 \pi / 6)=-2 \sqrt{3} \tag{16}
\end{align*}
$$

2. A particle of mass m undergoes damped oscillations with damping coefficient β and natural frequency $\omega_{0}\left(\omega_{0} \gg \beta\right)$. At $t=0$, it starts at $x=A$ with $\dot{x}=0$.
(a) Calculate the kinectic energy, potential energy, and total energy as functions of time.

SOLUTION - Starting from a general solution for damped oscillations $x(t)=\mathcal{C} e^{-\beta t} \cos \left(\omega_{1} t-\delta\right)$, we apply the initial conditions to determine the constants \mathcal{C} and δ :

$$
\begin{align*}
x(0)=\mathcal{A} \rightarrow \cos \delta & =\mathcal{A} / \mathcal{C} \tag{17}\\
\dot{x}(0)=0 \rightarrow \sin \delta & =\frac{\beta}{\omega_{1}} \cos \delta=\frac{\beta \mathcal{A}}{\omega_{1} \mathcal{C}} \tag{18}
\end{align*}
$$

Using that $\cos \delta^{2}+\sin \delta^{2}=1$, we find that

$$
\begin{equation*}
\mathcal{C}=\mathcal{A} \sqrt{1+\left(\frac{\beta}{\omega_{1}}\right)^{2}} \tag{19}
\end{equation*}
$$

and because this is a damped osclliation, we have $\omega_{0} \gg \beta$, which implies that $\omega_{1} \approx \omega_{0}$ and the expression for \mathcal{C} can be simplified to just being equal to \mathcal{A}. Therefore this system can be described in terms of

$$
\begin{equation*}
x(t)=\mathcal{A} e^{-\beta t} \cos \left(\omega_{1} t-\delta\right) \tag{20}
\end{equation*}
$$

With this expression it's possible to calculate its potential and kinectic energy:

$$
\begin{align*}
U & =\frac{1}{2} k x^{2}=\frac{1}{2} m \omega_{0}^{2} \mathcal{A}^{2} e^{-2 \beta t} \cos ^{2}\left(\omega_{1} t-\delta\right) \tag{21}\\
T & =\frac{1}{2} m \dot{x}=\frac{1}{2} m \mathcal{A}^{2} e^{-2 \beta t}\left[\beta \cos \left(\omega_{1} t-\delta\right)+\omega_{1} \sin \left(\omega_{1} t-\delta\right)\right]^{2} \\
& =\frac{1}{2} m \mathcal{A}^{2} e^{-2 \beta t}\left[\beta^{2} \cos ^{2}\left(\omega_{1} t-\delta\right)+\omega_{1}^{2} \sin ^{2}\left(\omega_{1} t-\delta\right)+2 \beta \omega_{1} \cos \left(\omega_{1} t-\delta\right) \sin \left(\omega_{1} t-\delta\right)\right] \tag{22}
\end{align*}
$$

and total energy E, where three expressions were used to obtain its final form: $\omega_{1}^{2}=$ $\omega_{0}^{2}-\beta^{2}, \cos ^{2} \theta+\sin ^{2} \theta=1$ and $\sin (2 \theta)=2 \cos \theta \sin \theta$:

$$
\begin{equation*}
E=\frac{1}{2} m \mathcal{A}^{2} e^{-2 \beta t}\left\{\omega_{0}^{2}+\beta^{2}\left[\cos ^{2}\left(\omega_{1} t-\delta\right)-\sin ^{2}\left(\omega_{1} t-\delta\right)\right]+\beta \omega_{1} \sin \left(\omega_{1} t-\delta\right)\right\} \tag{23}
\end{equation*}
$$

(b) What is the average total energy (average over one cycle)? [Hint: Since $\omega_{0} \gg \beta$, one may assume that $\exp ^{-\beta t}$ stays relatively constant over one cycle. Then the average energy can be found by averaging only those terms that contain $\omega_{1} t$. Answer: $\left.E \approx \frac{1}{2} m \omega_{0} A^{2} \exp ^{-2 \beta t}.\right]$

SOLUTION - Averaging terms with ωt - we can ignore δ because it's a constant phase shift and it won't change the average value. Starting with $\cos ^{2}(\omega t)$:

$$
\begin{align*}
\left\langle\cos ^{2}(\omega t)\right\rangle & =\left\langle\frac{1+\cos (\omega t)}{2}\right\rangle=\frac{1}{2}+\frac{1}{2}\left[\frac{1}{T} \int_{0}^{T} \cos (\omega t) d t\right] \tag{24}\\
& =\frac{1}{2}+\frac{1}{2}\left[\left.\frac{1}{T} \sin (\omega t)\right|_{0} ^{2 \pi / \omega}\right]=\frac{1}{2} \tag{25}
\end{align*}
$$

and the same result can be calculated for $\left\langle\sin ^{2}(\omega t)\right\rangle=1 / 2$. Given that the integral of a periodic function over its period is zero, we have that $\langle\sin (2 \omega t)\rangle=0$; then we can write that the average total energy of this system is

$$
\begin{equation*}
\langle E\rangle=\frac{1}{2} m \mathcal{A}^{2} e^{-2 \beta t}\left[\omega_{0}^{2}+\beta^{2}\left(\frac{1}{2}-\frac{1}{2}\right)+\beta \omega_{1}(0)\right]=\frac{1}{2} m \omega_{0}^{2} \mathcal{A}^{2} e^{-2 \beta t} \tag{26}
\end{equation*}
$$

3. When a body is suspended from a fized point by a certain linear spring (i.e. obeying Hooke's law), the natural frequency of its vertical oscillations is found to be ω_{1}. When a different linear spring is used, the oscillations have angular frequency ω_{2}.
(a) Find the angular frequency when the two springs are used together in parallel.

SOLUTION - In this case the displacement is the same fo both springs, thus

$$
\begin{equation*}
F=-k_{1} x_{1}-k_{2} x_{2}=-\underbrace{\left(k_{1}+k_{2}\right)}_{\text {k-parallel }} x \tag{27}
\end{equation*}
$$

With this expression for k_{p} arallel we can write $\omega_{\text {parallel }}$

$$
\begin{align*}
& \omega_{\text {parallel }}=\sqrt{\frac{k_{\text {parallel }}}{m}}=\sqrt{\frac{k_{1}+k_{2}}{m}} \tag{28}\\
& \omega_{\text {parallel }}=\sqrt{\omega_{1}^{2}+\omega_{2}^{2}} \tag{29}
\end{align*}
$$

(b) Repeat the calculation when they are used in series.

SOLUTION - In this case the total displacement is the sum of the displacements of each spring

$$
\begin{equation*}
F=-k_{\text {series }}\left(x_{1}+x_{2}\right) \tag{30}
\end{equation*}
$$

Because the force on each spring has to be equal, we have

$$
\begin{align*}
& F_{12}=F_{21} \rightarrow-k_{1} x_{1}=-k_{2} x_{2} \rightarrow x_{1}=\frac{k_{2}}{k_{1}} x_{2} \tag{31}\\
& F=F_{21} \rightarrow-k_{\text {series }}\left(\frac{k_{2}}{k_{1}}+1\right)=-k_{2} x_{2} \tag{32}\\
& k_{\text {series }}=\frac{k_{1} k_{2}}{k_{1}+k_{2}} \tag{33}
\end{align*}
$$

Therefore we have

$$
\begin{equation*}
\omega_{\text {series }}=\sqrt{\frac{k_{\text {series }}}{m}}=\frac{\omega_{1} \omega_{2}}{\sqrt{\omega_{1}^{2}+\omega_{2}^{2}}} \tag{34}
\end{equation*}
$$

(c) Show that the first of these frequencies is at least twice the second.

SOLUTION - The ratio between $\omega_{\text {parallel }}$ and $\omega_{\text {series }}$ is

$$
\begin{equation*}
\frac{\omega_{p}}{\omega_{s}}=\frac{\omega_{1}^{2}+\omega_{2}^{2}}{\omega_{1} \omega_{2}}+\underbrace{\frac{2 \omega_{1} \omega_{2}}{\omega_{1} \omega_{2}}-\frac{2 \omega_{1} \omega_{2}}{\omega_{1} \omega_{2}}}_{\text {completing the square }}=\frac{\left(\omega_{1}^{2}-\omega_{2}^{2}\right)^{2}}{\omega_{1} \omega_{2}}+2 \tag{35}
\end{equation*}
$$

Since $\omega_{1} \omega_{2}$ is always greater than zero, we can see that ω_{p} / ω_{s} has to be always greater than 2 .
4. The position of an overdamped harmonic oscillator is given by Eq. (5.40) in the text.
(a) Find the constants C_{1} and C_{2} in terms of the initial position x_{0} and velocity v_{0}.

SOLUTION - We use the general solution for an overdamped harmonic oscillator, given by

$$
\begin{equation*}
x(t)=C_{1} e^{-\left(\beta-\sqrt{\beta^{2}-\omega_{0}^{2}}\right) t}+C_{2} e^{-\left(\beta+\sqrt{\beta^{2}-\omega_{0}^{2}}\right) t} \tag{36}
\end{equation*}
$$

From the initial conditions,

$$
\begin{gather*}
C_{1}+C_{2}=x_{0} \rightarrow C_{2}=x_{0}-C-1 \tag{37}\\
-\left(\beta-\sqrt{\beta^{2}-\omega_{0}^{2}}\right) C_{1}-\left(\beta+\sqrt{\beta^{2}-\omega_{0}^{2}}\right) C_{2}=v_{0} \tag{38}
\end{gather*}
$$

From equation 37:

$$
\begin{array}{r}
2 \sqrt{\beta^{2}-\omega_{0}^{2}} C_{1}-\left(\beta+\sqrt{\beta^{2}-\omega_{0}^{2}}\right)=v_{0} \\
C_{1}=\frac{v_{0}+\left(\beta+\sqrt{\beta^{2}-\omega_{0}^{2}}\right) x_{0}}{2 \sqrt{\beta^{2}-\omega_{0}^{2}}} \tag{40}
\end{array}
$$

and therefore

$$
\begin{equation*}
C_{2}=x_{0}-\left[\frac{v_{0}+\left(\beta+\sqrt{\beta^{2}-\omega_{0}^{2}}\right) x_{0}}{2 \sqrt{\beta^{2}-\omega_{0}^{2}}}\right]=-\frac{\left(\beta-\sqrt{\beta^{2}-\omega_{0}^{2}}\right) x_{0}-v_{0}}{2 \sqrt{\beta^{2}-\omega_{0}^{2}}} \tag{41}
\end{equation*}
$$

(b) Plot the resulting $x(t)$ for the two cases that $v_{0}=0$ and $x_{0}=0$.

SOLUTION - For $v_{0}=0$, we have

$$
\begin{equation*}
x(t)=\frac{\beta+\sqrt{\beta^{2}-\omega_{0}^{2}}}{2 \sqrt{\beta^{2}-\omega_{0}^{2}}} x_{0} e^{-\left(\beta-\sqrt{\beta^{2}-\omega_{0}^{2}}\right) t}-\frac{\left(\beta-\sqrt{\beta^{2}-\omega_{0}^{2}}\right) x_{0}}{2 \sqrt{\beta^{2}-\omega_{0}^{2}}} e^{-\left(\beta+\sqrt{\beta^{2}-\omega_{0}^{2}}\right) t} \tag{42}
\end{equation*}
$$

Meaning that after it's released, the overdamped HO returns to its equilibrium position as $t \rightarrow \infty$.
For the other case where $x_{0}=0$,

$$
\begin{equation*}
x(t)=\frac{v_{0}}{2 \sqrt{\beta^{2}-\omega_{0}^{2}}} e^{-\left(\beta-\sqrt{\beta^{2}-\omega_{0}^{2}}\right) t}-\frac{v_{0}}{2 \sqrt{\beta^{2}-\omega_{0}^{2}}} e^{-\left(\beta+\sqrt{\beta^{2}-\omega_{0}^{2}}\right)} \tag{43}
\end{equation*}
$$

This time, after the initial "kick" the system moves to a maximum displacement and then returns to its equilibruim position as $t \rightarrow \infty$.

$$
v_{0}=0
$$

$$
x_{0}=0
$$

(c) Show that for $\beta \rightarrow 0$ your solution in a) approaches the solution for undamped motion.

SOLUTION - Starting with the original expression for $x(t)$:

$$
\begin{align*}
& \lim _{\beta \rightarrow 0}=C_{1} e^{-\left(\beta-\sqrt{\beta^{2}-\omega_{0}^{2}}\right) t}+C_{2} e^{-\left(\beta+\sqrt{\beta^{2}-\omega_{0}^{2}}\right) t} \approx C_{1} e^{\sqrt{-\omega_{0}^{2}} t}+C_{2} e^{-\sqrt{\omega_{0}^{2}} t} \tag{44}\\
& x(t)=C_{1} e^{i \omega_{0} t}+C_{2} e^{-i \omega_{0} t} \tag{45}
\end{align*}
$$

which is the solution for the undamped harmonic oscillator. Also, for $\beta \rightarrow 0, C_{1}=C_{2} *$ so we can write

$$
\begin{align*}
x(t) & =\frac{x_{0}}{2}\left(e^{i \omega t}+e^{-i \omega t}\right)+\frac{v_{0}}{2 i \omega}\left(e^{i \omega t}-e^{-i \omega t}\right) \tag{46}\\
& =x_{0} \cos (\omega t)+\frac{v_{0}}{\omega} \sin (\omega t) \tag{47}
\end{align*}
$$

