Homework # 4

Physics 411 Due: 02.16.2018 Mechanics I

1. At time t = 0, a particle moving in a simple harmonic motion has z = 2v/3, & = 6, and

7= —18/3.

(a)

Write an expression for the motion of the form x = Re(Ae™?), where A is a complex
number.

SOLUTION - Using the expression given for z(¢) we can use the initial conditions to
determine A and w:

2(0) = Re(A) = 2v/3 (1)
wRe(iA) = 6 (2)
i(0) = —w’Re(A) = —18V/3 (3)
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Writing A = a+ib, from equation 1 we have that A = 2v/3+ib. With this information,
we can find w directly from equation 3,

2v/3w? = 18V3 — w =3, (4)
Now, pluggling these values to equation 2 we have

wRe(iA) =6 — Re(iA) =2 (5)
iA=ia—b — Re(iA) = —b=2 (6)

Putting all together we have z(t) = Re[(2v/3 — 2i)e**] O

Write an expression for the motion of the form z = A cos(wt — ¢), where A and ¢ are
real.

SOLUTION - Using the same approach we find

z(0) = Acos ¢ = 2V/3 (7)
#(0) = wAsing =6 (8)
i(0) = —wAcos ¢ = —18V3 (9)

Dividing equation 7 by 9 we find that w = 3, as before. From equation 7 and 8 we
have

Asing =2 and Acos¢=2V3 (10)
A%(sin® ¢ + cos? ¢) = 16 — A = 4 (11)

Lastly we can determine ¢:
12singp =6 — ¢ =7/6 (12)

adn write out x(t) = 4 cos(3t — x/6) L.



(c) Represent Aexp™! as a rotating vector in the complex plane. Draw a diagram showing
its position at t =0, t = 7 /18, t = 27/9, and t = /3.

SOLUTION - We can represent x(t) = 4cos(3t —7/6) in a complex plane using
its magnitude and corresponding angle as follows:

2(0) = 4 cos(—7/6) = 2v/3 (13)
x(m/18) = 4cos(0) =4 (14)
x(27/9) = 4cos(37/6) =0 (15)

x(m/3) = 4cos(57/6) = —2v/3 (16)

t=2pi/9

t=pi/3

t=pi/18
-

t=0

2. A particle of mass m undergoes damped oscillations with damping coefficient 5 and
natural frequency wo(wp > ). At t =0, it starts at = A with & = 0.

(a) Calculate the kinectic energy, potential energy, and total energy as functions of time.

SOLUTION - Starting from a general solution for damped oscillations z(t) = Ce ™! cos(w;t — 4),
we apply the initial conditions to determine the constants C and ¢:

z(0)=A — cosd =A/C (17)
m’(O)zO—)sinézwﬁlcosészé (18)

Using that cos d? + sin % = 1, we find that

¢ A 1+<ﬁ)2 (19)
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and because this is a damped osclliation, we have wy > 8, which implies that w; &~ wy
and the expression for C can be simplified to just being equal to A. Therefore this
system can be described in terms of

z(t) = Ae P cos(wit — 6). (20)

With this expression it’s possible to calculate its potential and kinectic energy:

1 1
U= §lm2 = §mw3A26_25t cos?(wit — &) (21)
1 1
T = §m:t' = EmA2e’2ﬁt[B cos(wit — 6) + wy sin(wt — 6)]?
1
= §m./42e_25t[52 cos?(wit — 6) + w? sin®(wit — &) + 2w cos(wit — &) sin(w;t — J)]
(22)

and total energy FE, where three expressions were used to obtain its final form: w} =
wi — 32, cos? 0 +sin? @ = 1 and sin(20) = 2 cos f sin 6:

E = %mA%_%t{wS + B*[cos®(wit — 8) — sin®(wit — )] + Bwy sin(wit —6)} O (23)

(b) What is the average total energy (average over one cycle)? [Hint: Since wy > 0,
one may assume that exp~? stays relatively constant over one cycle. Then the av-
erage energy can be found by averaging only those terms that contain w;t. Answer:
E ~ smwyA? exp= 2t

SOLUTION - Averaging terms with wt - we can ignore d because it’s a constant
phase shift and it won’t change the average value. Starting with cos?(wt):

(cos?(wt)) = <H#S<“’t)> =+ {% /0 ' cos(wt)dt} (24)
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and the same result can be calculated for (sin(wt)) = 1/2. Given that the integral of
a periodic function over its period is zero, we have that (sin(2wt)) = 0; then we can
write that the average total energy of this system is

(B) =yt [ 4 (5

1

- 5) + ﬁwl(O)] = lmw(Q)AQG_Q’Bt (26)
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3. When a body is suspended from a fized point by a certain linear spring (i.e. obeying
Hooke’s law), the natural frequency of its vertical oscillations is found to be w;. When a
different linear spring is used, the oscillations have angular frequency ws.



(a) Find the angular frequency when the two springs are used together in parallel.

SOLUTION - In this case the displacement is the same fo both springs, thus
F = —/{Zlﬂfl — k'QSCQ = — (kl + kg) a (27)
—_——
k-parallel
With this expression for k,arallel we can write Wpgprqizer

k. aralle ki + kK
Wparallel = —parallel = \/ . 2 (28)

m m

Wparallel = \/ w% + w% [ (29)

(b) Repeat the calculation when they are used in series.

SOLUTION - In this case the total displacement is the sum of the displacements
of each spring

F = —Fkgeries(x1 + 22) (30)
Because the force on each spring has to be equal, we have
Fio = Fy = —kixy = —koto — 11 = :—ixg (31)
F = Fy1 = —kseries (Z—j + 1) = —koxo (32)
k1 k
Kseries = 7 (33)
Therefore we have
Kseries Wi ] (34)

Wseries = = 5 5
m V wi + wj

(c) Show that the first of these frequencies is at least twice the second.

SOLUTION - The ratio between wpgraizer and Wsepies 18

2 2 2
Wy _ wit+w; N 2wy 2wy (wi — ws 49 (35)
Ws Wiwo Wiw2 WiwWs W1wo

~
completing the square

Since wyws is always greater than zero, we can see that w,/ws has to be always greater
than 2.



4. The position of an overdamped harmonic oscillator is given by Eq. (5.40) in the text.

(a)

Find the constants C; and C5 in terms of the initial position xg and velocity vy.

SOLUTION - We use the general solution for an overdamped harmonic oscillator,
given by

2(t) = Cre” VP =0t 4 Oy~ (B —wi)t (36)

From the initial conditions,
01+CQZZL‘Q—)CQZIL‘()—C—1 (37)

—(B—=1/B?—wp)C1 — (B + \/52 — w§)Cy = vy (38)

From equation 37:

2/ — wBC) <5+ \/H) — v (39)

0, = vo + (B + /8% — wi)xo (40)
R

and therefore

CQI.CUO—

v0+(5+\/62—w8)x0] _(B= VB = wh)mo — v 0 (41)
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Plot the resulting z(t) for the two cases that vy = 0 and xy = 0.

SOLUTION - For vy = 0, we have

x(t) = 6+ V5 _wo T 5 v _“0 eV (42)
Meaning that after it’s released, the overdamped HO returns to its equilibrium position

as t — oo.
For the other case where zy = 0,

2(t) = —X o VEd 0 —(p/Eh) (43)

- 2/~ ok

This time, after the initial “kick” the system moves to a maximum displacement and
then returns to its equilibruim position as t — oo.
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(c) Show that for f — 0 your solution in a) approaches the solution for undamped motion.
SOLUTION - Starting with the original expression for z(t):

lim = Cye~ (VP! 4 Chem(FHVI )l & OeV 74t 4 Che VSt (44)

B—0
.T(t) = Cleiwot + 026_iw0t (45)

which is the solution for the undamped harmonic oscillator. Also, for 5 — 0, C7; = Cox
SO we can write

z w —iw U w —iw
x(t):?o(et—ke t)—l—ﬁ(et—e ") (46)
= 1z cos(wt) + % sin(wt) O (47)
w



