
Physics 411
Homework # 3

Due: 02.09.2018 Mechanics I

1. A meteorite falls to earth from very far away with negligible initial speed. Neglecting air
friction, how fast is it going when it hits the earth’s surface? Express your answer in terms
of the mass of the earth ME, the radius of the earth RE, and the gravitational constant G.
You may take the initial distance from the earth to be infinite.

SOLUTION - We can solve this problem using conservation of energy. The potential
energy for the meteorite can be calculated from Earth’s gravitational force as follows

U(r) = −
∫ r

∞
F(r′) · dr′ (1)

= −
∫ r

∞

GmME

r2
r̂ · r′ (2)

= −GmME

r
(3)

At the initial point, the total energy is equal to zero - its speed it’s negligible which means
no kinectic energy, and it’s at a infinite distance from Earth which means it’s not affected
by its gravitational pull. The final energy is given by

Efinal = Tfinal + U(RE) =
1

2
mv2final −

GmME

RE

(4)

and it’s possible to find its final velocity by equating initial and final energy:

1

2
mv2final −

GmME

RE

= 0 (5)

vfinal =

√
2GME

RE

(6)

2. Suppose a particle of mass mmoves along the x-axis governed by a force F (x) = −ax+bx3,
where a and b are positive constants.

(a) Find the potential U(x) and draw a rough graph of it.

SOLUTION - The potential energy is given by

U(x) = −
∫
F (x)dx =

1

2
ax2 − 1

4
bx4. (7)

To make a a rough plot of this, it’s useful to know its extreme points

du

dx
= ax− bx3 = 0 (8)

→ x(a− bx2) = 0 (9)

This gives us three inflection points, two maxima at x = ±
√
a/b and a minimum at

x = 0 and wil have a general form like this:
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(b) What is the minimum speed the particle must be given at x = 0 so that it will escape
to x = +∞?

SOLUTION - To escape to x = ∞ the particle must overcome the potential bar-
rier which has a maximum at x =

√
a/b. We start from the origin and would like for

it have enough energy to get to that point, so we can assume that at x =
√
a/b its

velocity has to be greater or equal to zero. Using conservation of energy we find

Einital = Tinitial + U(x = 0) = Efinal = T (v = 0) + U(x =
√
a/b) (10)

1

2
mv2 =

1

2
a
(a
b

)
− 1

4
b
(a
b

)2
(11)

1

2
mv2 =

1

2

a2

b
(12)

v =

√
a2

2mb
(13)

3. A very useful application of the gradient is that it gives us the change in U (or any scalar
function) resulting from a small displacement dr:

dU = ∇U · dr (14)

(a) Show that the direction of ∇U at any point r is the direction in which U increases
fastest as we move away from r.(Choose a small displacement dr = εu, where u is a
unit vector and ε is fixed and small, and find the direction of u for which dU is largest).

SOLUTION - Rewriting equation 14 using dr = εû, we have

dU = ∇U · εû = ε∇U · û (15)

= ε|∇U | |u|︸︷︷︸
=1

cos θ (16)

= ε|∇U | cos θ (17)
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Therefore, dU is at its maximum when cos θ = 1 → θ = 0, which happens when ∇U
and dr are parallel. This is the direction that U increases fastest as we move away
from r.

(b) Which of the following forces is conservative? (i) F = k(x, 2y, 3z) where k is a con-
stant. (ii) F = k(y, x, 0). (iii) F = k(−y, x, 0). For those which are conservative, find
the corresponding potential energy U , and verify by direct differentiation that F = ∇U .

SOLUTION - We can determine that a force is conservative by calculating its curl.

(i) F = k(x, 2y, 3z)

∇× F =

∣∣∣∣∣∣
î ĵ k̂

∂/∂x ∂/∂y ∂/∂z
kx 2ky 3kz

∣∣∣∣∣∣ (18)

=
∂

∂y
(3kz)̂i +

∂

∂z
(2ky)k̂− ∂

∂y
(kx)k̂− ∂

∂x
(3kz)̂j− ∂

∂z
(2ky)̂i (19)

This force is conservative because ∇ × F = 0. By direct integration we can find the
potential energy:

U = −
∫

F · r = −
∫
Fxdx

′ −
∫
Fydy

′ −
∫
Fzdz

′ (20)

= −k
∫
x′dx′ − 2k

∫
y′dy′ − 3k

∫
3z′dz′ (21)

= −k
(

1

2
x2 + y2 +

3

2
z2
)

(22)

and check that F = −∇U

F = k

[
∂

∂x

(
1

2
x2
)
î +

∂

∂y
y2̂j +

∂

∂z

(
3

2
z2
)
k̂

]
(23)

= k(x, 2y, 3z) (24)

(ii) F = k(y, x, 0)

∇× F =
∂

∂z
(ky)̂j +

∂

∂x
(kx)k̂ +

∂

∂y
(ky)k̂ +

∂

∂z
(kx)̂i = 0 (25)

U = −k
∫
y′dx′ + k

∫
x′dy′ = −k

∫
d(x′y′) = −kxy (26)

F = −∇U = k

[
∂

∂x
(yx)̂i +

∂

∂y
(yx)̂j +

∂

∂z
(yx)k̂

]
(27)

= k(y, x, 0) (28)
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(iii) F = k(−y, x, 0)

∇× F =
∂

∂z
(ky)̂j +

∂

∂x
(kx)k̂− ∂

∂y
(ky)k̂ +

∂

∂z
(kx)̂i = 2kk̂ (29)

This force is not conservative and F = −∇U does not hold true in this case.

4. Consider a mass m confined to the x-axis with a potential energy of U = kx4 with k > 0.
At time t = 0, when it is sitting at the origin, it is given a sudden kick to the right.

(a) Find the time for the mass to reach its maximum displacement xmax = A. Your answer
will be given as an integral over x in terms of m, A and k.

SOLUTION - Using conservation of energy, we have

Einitial = Efinal (30)

1

2
mv2 + kx4 = kA4 (31)

given that at xmax the energy is purely potential. To find tmax we integrate the expres-
sion found for v(t) as follows

1

2
mv2 = k(A4 − x4) (32)

dx

dt
=

[
2k

m
(A4 − x4)

]
(33)∫ tmax

0

dt =

∫ A

0

√
m

2k

dx

(A4 − x4)1/2
(34)

tmax =

√
m

2k

∫ A

0

dx

(A4 − x4)1/2
(35)

(b) Find the period τ of oscillations of amplitude A, and by making a suitable change of
variables, show that it is inversely proportional to A. (Thus, the larger the amplitude
the shorter the period!)

SOLUTION - Defining y = x/A, we can rewrite tmax as

tmax =

√
m

2k

∫ A

0

dx

A2(1− x4/A4)1/2
(36)

=

√
m

2k

∫ A

0

Ady

A2(1− y4)1/2
(37)

This integral can be solved numerically and since it’s a definite integral it’s just a
number. Because tmax gives the time it takes to go from the origin to xmax which
corresponds to 1/4 of the complete oscillation, the period of oscillation is just 4tmax.
(Think about how many “tmax” does it take for the particle to go from −xmax to xmax

and back.)
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(c) The integral cannot be evaluated in terms of elementary functions. This is often
the case, but for small oscillations about the minimum of any potential energy U(x),
we may approximate U by the first three terms of its Taylor series in powers of x
(or if the minimum was located at x = a, in powers of x − a). Write down the
equation of conservation of energy. The small oscillations about the minimum are thus
approximately simple harmonic. If

U =
x(x− 3)2

3
, (38)

find the period of small oscillations about the minimum at x = 3. (Note that there is
another equilibrium point at x = 1, but it is a maximum.)

SOLUTION - First we expand U(x) in a Tylor series around x = 3. A Taylor
series looks like this for a given function f(x):

f(x) = f(x0) +
f ′(x0)

1!
+
f ′′(x0)

2!
+
f ′′′(x0)

3!
+ · · · (39)

Thus for this potential energy we find

U(x = 3) = 0 (40)

U ′(x = 3) =
(x− 3)2

3
+

2x(x− 3)

3

∣∣∣
x=3

= 0 (41)

U ′′(x = 3) =
2(x− 3)

3
+

2x

3

∣∣∣
x=3

= 2 (42)

Therefore its Taylor series is U(x) ≈ 2
2!

(x − 32) = (x − 3)2. This approximation for
small oscillations has the same form of a harmonic oscillator U(x) = 1

2
kx2 with k = 2,

so the period is given by τ = 2π
√
m/k

τ = 2π

√
m

2
= π
√

2m (43)
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