Supernovae II a 000 0000000 Neutron Stars 00000000 Next Time

Outline

Introduction

Simplest Stellar Model Stellar Evolution

Supernovae II a

Gravitational Collapse νs role

Neutron Stars

Neutron Star cooling

Supernovae II a 000 00000000 Neutron Stars 00000000 Next Time

Outline

Introduction Simplest Stellar Model Stellar Evolution

Supernovae II a Gravitational Collapse ν s role

Neutron Stars Neutron Star cooling

Supernovae II a 000 00000000 Neutron Stars 00000000 Next Time

Simplified Stellar Model

Newton's Gravitation

$$\frac{d\mathcal{P}}{dr} = -G\frac{\mathcal{M}(r)\rho(r)}{r^2} \quad (1)$$
$$\frac{d\mathcal{M}}{dr} = 4\pi r^2 \rho(r) \quad (2)$$

Total Energy

$$E_T = \sum_i \left(m_i + \frac{p_i^2}{2m_i} \right) + E_g + E_\gamma$$

$$E_g = -G \int_0^R \frac{\mathcal{M}(r)\rho(r)}{r} 4\pi r^2 dr$$

Integrating (1) by parts:

$$3\bar{\mathcal{P}}V=\frac{3}{5}G\frac{M^2}{R_g}$$

where have defined, R_g , gravitational radius :

$$R_g = -\frac{\frac{3}{5}GM^2}{E_g}$$

 $R_g \sim 0.37 R_{\odot}$

Star ~ Ideal Gas • $N\bar{T} = \bar{\mathcal{P}}V$ • $\langle K \rangle = \frac{3}{2}N\bar{T}$

 $c = 1, \, \hbar = 1 \, k_b = 1$

Supernovae II 000 00000000 Neutron Stars 00000000 Next Time

Combining all together:

$$E_T = \sum_i m_i - \frac{3}{10}G\frac{M^2}{R_g} + E_\gamma$$

$$L = -\frac{dE_T}{dt}$$

= $-\left(\frac{d\mathcal{M}_{\text{rest}}}{dt} + \frac{3}{10}G\frac{M^2}{R_g^2}\frac{dR_g}{dt}\right)$
 $-\frac{dE_{\gamma}}{dt}$

 $\begin{array}{l} L > 0 \\ \frac{dE_{\gamma}}{dt} < 0 \ \rightarrow \ \gamma \ \text{Diffusion} \\ \frac{dM_{\text{rest}}}{dt} < 0 \ \rightarrow \ \text{Exothermic Reactions} \\ \frac{dR_g}{dt} < 0 \ \rightarrow \ \text{Contraction} \end{array}$

- Nuclear energy production increases
 - $\Rightarrow T$ increases locally
 - \Rightarrow Expansion(reducesT)
 - \Rightarrow reaction rate decreases.
- Nuclear production decreases
 - $\Rightarrow \mathcal{P} \text{ decreases}$
 - \Rightarrow Contraction.
 - $\Rightarrow T$ increases
 - \Rightarrow reaction rate

increases.

 $c = 1, \, \hbar = 1 \, k_b = 1$

Supernovae II a 000 00000000 Neutron Stars 00000000 Next Time

Outline

Introduction Simplest Stellar Mode Stellar Evolution

Supernovae II a Gravitational Collapse ν s role

Neutron Stars Neutron Star cooling

Supernovae II a 000 00000000 Neutron Stars 00000000 Next Time

Star life-time

Gravitational time scale

$$\frac{G\mathcal{M}^2}{R} \sim L\tau_g$$
$$\tau_g \sim \frac{G\mathcal{M}^2}{RL}$$

In the case of the sun:

 $\tau_g \sim \frac{G\mathcal{M}_\odot^2}{R_\odot L_\odot} \sim 3\times 10^9 \mathrm{y}$

Non-Gravitational Energy

$$E_{n-g} = \mathcal{M} - \frac{G\mathcal{M}^2}{R}$$

 E_{n-g} $\odot \sim 1.78 \times 10^{54} \mathrm{erg}$

Nuclear time scale

 $4p \rightarrow^4 \text{He} + 2\nu_e + 2e^+$

Binding Energy $({}^{4}\text{He}) \sim 28 \text{MeV}$ Fraction of mass converted into energy:

$$\epsilon = \frac{28.28 \text{MeV}}{4 \times 938.27 \text{MeV}} \sim 0.7\%$$

Again for the sun (having about 10% H):

$$\begin{aligned} \tau_{nuc} &\simeq & 0.1 \times 0.007 \frac{1.78 \times 10^{54}}{3.846 \times 10^{33}} \text{s} \\ &\simeq & 10^{10} \text{y} \end{aligned}$$

Supernovae II a 000 00000000 Neutron Stars 00000000 Next Time

Some Numbers

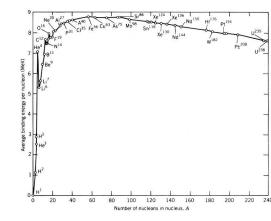
Natural Units:

 $\hbar c = 197.33 \text{ MeV} \times \text{fm} = 1$

Temperature $(k_b = 1)$:

$1 {\rm MeV} = 1.1604 {\times} 10^{10} {\rm K}$

Quantity	Value	
G	$6.67 imes 10^{-8} ext{cm}^3/ ext{gs}^2$	
\mathcal{M}_{\odot}	$1.99 \times 10^{33} \mathrm{g}$	$1.12 \times 10^{60} \mathrm{MeV}$
R_{\odot}	$6.96 \times 10^{10} { m cm}$	
L_{\odot}	$3.846 imes 10^{33} \mathrm{erg/s}$	
T^{c}_{\odot}	$1.5 \times 10^7 { m K}$	$\sim 10^{-3} { m MeV}$
$ ho_{\odot}$	$150 \mathrm{~g/cm^3}$	
$ ho_0$	$3 imes 10^{14} { m g/cm^3}$	$\sim 0.16~{ m fm}^{-3}$

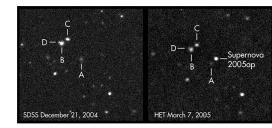

Supernovae II a 000 00000000 Neutron Stars 00000000 Next Time

Stellar Evolution

Nuclear Reactions

- $p + p \rightarrow \text{He}$
- 2 ⁴He, ³He \rightarrow C and O .
- $\textcircled{9} Mg+ He \rightarrow {}^{28}Si$
- Si \rightarrow Fe (This lasts days).

Depending on Star's Mass.



Supernovae II a 000 00000000 Neutron Stars 00000000 Next Time

Formation of Compact Objects

Massive Stars: $\mathcal{M} \geq 8\mathcal{M}_{\odot}$

- Burns all the way to Fe (gets to stage 5).
- Fe core collapses \leftrightarrow Core Collapse supernovae.
- Remnant is a Neutron Star or a Black Hole.

Low mass Stars: $\sim 1 \mathcal{M}_{\odot}$

- Burns He.
- Sheds some mass.
- Never gets hot enough to burn C or O. Only until stage 2.
- Electron degeneracy provides pressure.
- No explosion.
- Remnant is a White Dwarf.

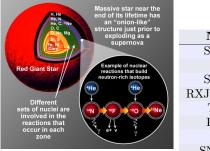
Supernovae II a •00 00000000 Neutron Stars 00000000 Next Time

Outline

Introduction Simplest Stellar N

Stellar Evolution

Supernovae II a Gravitational Collapse


 νs role

Neutron Stars Neutron Star coolin

Supernovae II a 000 00000000 Neutron Stars 00000000 Next Time

Gravitational Collapse

$\mathcal{M} > 8 \mathcal{M}_\odot$

More or less close:

Name	Year	Distance[kpc]	
SN1006	1006	2	
Crab	1054	2.2	
SN1181	1181	8.0	
RXJ0852-4642	1300	~ 0.2	
Tycho	1572	7.0	
Kepler	1604	10.0	
CasA	1680	3.4	
SN1987A	1987	50 ± 5	

Strucutre of a massive star.

Before collapsing

- $\rho \sim 2 \times 10^9 {\rm g/cm^3}$.
- $T \sim 0.5 \text{MeV} \sim 5 \times 10^9 \text{K}.$
- Planet size: $R \sim 20$ km.
- Proto-neutron Star: hot and lepton rich.

Supernovae II a 000 00000000

- Proto-neutron star is hot and lepton-rich.
- Iron core grows.
- Collapse to $3 \times 10^{14} \text{g/cm}^3$.
- Density is high enough to drive electron capture

$$e + p \to n + \nu_e$$
$$e + A^A Z \to A^A (Z - 1) + \nu_e$$

• In chemical equilibrium $E_{\nu} \sim \mu_{\nu}$

 $\mu_e + \mu_n = \mu_n + E_\nu$

• e^- captures decreasing Y_e (and $n_e = Y_e n_b$) Neutron Stars

- Delicate balance between pressure and gravity
- $\mathcal{P} \sim n_e^{4/3}$
- Electron fraction:

$$Y_e = \begin{cases} 1 & \text{H} \\ 1/2 & {}^{4}\text{He}, {}^{12}\text{C}, {}^{16}\text{O} \\ {}^{26}/_{56} & {}^{56}\text{Fe} \end{cases}$$

 $\Rightarrow Y_e$ goes lower than $^1/_2$

Y_e too small to fail...

If ν s continue to escape, Y_e gets too small (not enough \mathcal{P}) \Rightarrow collapse to **Black Hole**.

Supernovae II a 000 •0000000 Neutron Stars 00000000 Next Time

Outline

Introduction

Simplest Stellar Model Stellar Evolution

Supernovae II a

Gravitational Collapse ν s role

Neutron Stars

Neutron Star cooling

Supernovae II a 000 0000000 Neutron Stars 00000000 Next Time

ν s role

νs do not leave that fast

 $\lambda_{\nu} := \nu$ mean free path. $n_b :=$ number baryon density. $\sigma :=$ cross section

Coherent Scattering ν + Spin zero Nucleus.

- Assume contact interaction.
- Elastic process.
- Assume Q is small.

•
$$Q^2 = 2E_{\nu}^2(1 - \cos\theta)$$

 q_n and q_p are weak charges of the neutron and the proton.

$$\lambda_{\nu} = \frac{1}{n_b \sigma(E)}$$

 $\nu + A Z$

$$\frac{d\sigma}{d\Omega}(\theta) = \frac{G_F^2}{4\pi^2} E_{\nu}^2 \left(1 + \cos\theta\right) q_A^2 F(Q^2)$$

 $q_A :=$ Nucleus weak charge. $F(Q^2) :=$ Nucleus form factor.

$$F(Q^2) = \frac{1}{q_A} \int d\mathbf{r} e^{i\mathbf{Q}\cdot\mathbf{r}} \left(q_n n_n(\mathbf{r}) + q_p n_p(\mathbf{r})\right)$$

Supernovae II a 000 0000000 Neutron Stars 00000000 Next Time

Cross section

 q_W := Weak charge:= Weak Isospin - $2\sin^2\theta_W q_{em}$

$$q_{u} = \frac{1}{2} - \frac{4}{3} \sin^{2} \theta_{W} \qquad q_{p} = 2q_{u} + q_{d} = \frac{1}{2} - 2 \sin^{2} \theta_{W}$$
$$q_{d} = -\frac{1}{2} + \frac{2}{3} \sin^{2} \theta_{W} \qquad q_{n} = 2q_{d} + q_{u} = -\frac{1}{2}$$

Since $\sin^2 \theta_W \sim \ ^1/_2$ then $q_p \sim 0$

Nucleus total weak charge

$$q_A \sim -\frac{1}{2} \times (A - Z) = -\frac{N}{2}$$

Nucleus Form Factor

For small momentum transfer: $Q \times \text{Nucleus Size} \ll 1$:

 $F(Q^2) \sim 1$

Supernovae II a 000 0000000 Neutron Stars

Next Time

ν s mean free path

$$\frac{d\sigma}{d\Omega}(\theta) = \frac{G_F^2}{4\pi^2} E_\nu^2 \left(1 + \cos\theta\right) q_A^2 F(Q^2)$$

$$\sigma_{tr} = \int d\Omega \frac{d\sigma}{d\Omega} (1 - \cos \theta)$$
$$= \frac{2}{3} \frac{G_F^2}{\pi} E_{\nu}^2 \frac{N^2}{4}$$

Consider Iron core: ⁵⁶Fe, N = 30 $G_F = 1.16 \times 10^{-11} \text{MeV}^{-2}$ and $E_{\nu} \sim 10 \text{MeV}.$

$$\sigma_{tr} = 6.4 \times 10^{-19} \text{MeV}^{-2}$$
$$= 2.49 \times 10^{-13} \text{fm}^2$$

 $n_b = \rho_b \frac{N_A}{56g}$ = $10^{12} \frac{g}{cm^3} \frac{6.02 \times 10^{23}}{56g}$ ~ $1.07 \times 10^{-5} \text{fm}^{-3}$

... baryon number density is:

 ν trapping $\lambda_{\nu} = \frac{1}{n_b \sigma_{tr}} \sim 3.7 \times 10^{18} \text{fm}$ $= 3.7 \text{km} < R_{NS}$

Supernovae II a 000 00000000 Neutron Stars 00000000

Questions from last time

- Simplest stellar model, E_{γ} counts only photons that do not come from nuclear reactions.
- **②** Star life-time Had a typo: should be 10% Hydrogen. This is the amount of H available to burn in the sun.
- Stellar Evolution Where the ³He comes from in stellar reactions?
 ⇒ For all pp chains:

 $p + p \rightarrow d + e^+ + \nu_e$ $d + p \rightarrow {}^{3}\text{He} + \gamma$

from here different possible paths could produce $^{4}\mathrm{He},$ different pp-chains, all of them destroy $^{3}\mathrm{He}.$

9 ν s role Why that form for the differential cross section?

$$\frac{d\sigma}{d\Omega}(\theta) = \frac{G_F^2}{4\pi^2} E_\nu^2 \left(1 + \cos\theta\right) q_A^2 F(Q^2)$$

Original paper by Freedman (PRD ${\bf 9}$ 1389 (1974))

Supernovae II a 000 00000000 Neutron Stars 00000000

- Since ν s still in the star.
- Y_e does not fall as fast (*e*-capture is suppressed), \Rightarrow This prevents the collapse to happen faster.
- ν s are radiated from the proto-neutron star ($\tau_{\nu} \sim s$), BUT timescale of the collapse is ms $\Rightarrow \nu s$ are trapped.
- The supporting pressure is still decreasing.
- When $\rho_{\rm core} > \rho_0$, $\rho_0 = 3 \times 10^{14} {\rm g/cm^3}$ the outer core free-falls onto inner core.
- The hard core repulsion makes the core to bounce \Rightarrow a shock wave is generated.
- Shock losses its energy through scattering with ν and nuclear processes.
- ν s from the core (assisted by other mechanisms) resuscitate the shock (no conclusive),

 \Rightarrow expelling the massive stellar mantle.

• Proto-neutron star shrinks because of the losses of neutrinos

Supernovae II a 000 000000●0 Neutron Stars 00000000 Next Time

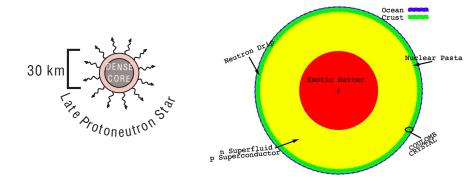
Role of Supernovae

Energy released in ν s:

Hubble image of the crab nebulae.

Image from NASA.

Expanding ejecta from the explosion


in 1054.

$$\delta E = \left(-G \frac{\mathcal{M}_{GS}}{R_{GS}}\right) - \left(-G \frac{\mathcal{M}_{NS}}{R_{NS}}\right) \simeq 10^{53} \mathrm{erg.}$$

- Stellar Nucleosynthesis. (Abundances).
- Trigger star formation.
- Accelerate cosmic rays.
- Important source of ν s.
- The remnant is either a Neutron Star or a Black hole.
- Type Ia can be used as standard ruler for astronomy.

Supernovae II a 000 0000000● Neutron Stars 00000000 Next Time

Supernovae Remnant \Rightarrow Neutron Star

Supernovae II a 000 0000000 Neutron Stars •0000000 Next Time

Outline

Introduction

Simplest Stellar Model Stellar Evolution

Supernovae II a Gravitational Collapse ν s role

Neutron Stars Neutron Star cooling

Supernovae II a 000 00000000 Neutron Stars

Next Time

Neutron Star cooling Weeks after the explosion, $T \sim 10^9 - 10^{10}$ K.

$$C_V(T_i)\frac{dT_i}{dt} = -L_\nu(T_i) - L_\gamma(T_s) + \sum_k H_k$$

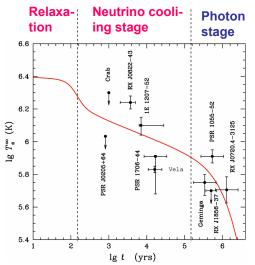
• In 10 to 10² years heat is transported by electrons into the interior,

where it is radiated away in ν s. • $T_{\nu} \neq T_{\nu}$

•
$$I_i \neq I_s$$
.

$$C_V = rac{4\pi}{3}R^3c_vT_i$$

 $L_
u(T_i) = \int Q_
u d\mathbf{r}$
 $L_\gamma(T_s) = 4\pi R^2\sigma T_s^4$


By then the star is in thermal equilibrium.

 T_i :=Internal temperature. T_s :=Surface temperature. H_k :=Heating mechanisms (frictional heating of superfluid neutrons in the inner crust or exothermal nuclear reactions.)

 $Q_{\nu} :=$ Neutrino emissivity

Supernovae II a 000 00000000 Neutron Stars

Red line is model of Modified Urca (slow cooling) by Yakovlev & Pethick (2004)

Supernovae II a 000 00000000 Neutron Stars

Next Time

ν cooling- emissivity

 $Q_{\nu} := \nu$ emissivity

- Depends on specific reactions (microphysics).
- In general two forms are found:

 $\begin{array}{rcl} Q^{1}_{\nu} & = & Q_{1}T^{8}_{i} \\ Q^{2}_{\nu} & = & Q_{2}T^{6}_{i} \end{array}$

• From where the ν luminosity is:

$$L_{\nu}^{1} = \frac{4\pi R^{3}}{3}Q_{1}T_{i}^{8}$$
$$L_{\nu}^{2} = \frac{4\pi R^{3}}{3}Q_{2}T_{i}^{6}$$

Supernovae II a 000 00000000 Neutron Stars 00000000 Next Time

In the ν - cooling era: $L_{\nu} << L_{\gamma}$ Neglect other processes $(H_k \sim 0)$.

$$C_V(T_i)\frac{dT_i}{dt} = -L_\nu(T_i) = \begin{cases} \frac{4\pi R^3}{3}Q_1 T_i^8\\ \frac{4\pi R^3}{3}Q_2 T_i^6 \end{cases}$$

from where we find:

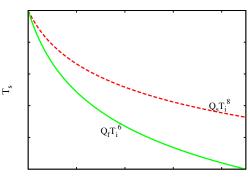
$$T_i \sim \begin{cases} t^{-1/6}, \text{ for } L^1_{\nu} \\ t^{-1/4}, \text{ for } L^2_{\nu} \end{cases}$$

 $\begin{array}{l} L^1_\nu \Rightarrow \mbox{slow cooling.} \\ L^2_\nu \Rightarrow \mbox{fast cooling.} \end{array}$

But how to relate T_s and T_i ?

Supernovae II a 000 00000000 Neutron Stars

Next Time


T_i and T_s

Assume a power law:

 $T_s = \kappa_{\rm env} T_i^{\frac{1}{2}+a}$

- Here κ_{env} and *a* depend on the composition of the envelope.
- It has been found $a \ll 1$ for most of the proposed compositions.
- Then from previous slide:

$$T_s \sim \begin{cases} t^{-1/12}, \text{ for } L_{\nu}^1 \\ t^{-1/8}, \text{ for } L_{\nu}^2 \end{cases}$$

t

Supernovae II a 000 00000000 Neutron Stars

Next Time

ν emission processes

At high densities

Name	Process	$Q_{ m u} [{ m erg}/{ m cm}^3{ m s}]$	$L_{ u}[\mathrm{erg/s}]$
Dir. Urca	$n \rightarrow p + e + \bar{\nu}_e$	$\simeq 10^{27} T_9^6$	$10^{46}T_9^6$
	$p + e \rightarrow n + \nu_e$		
Quark Urca	$d \rightarrow u + e + \bar{\nu}_e$	$\simeq 10^{26} \alpha_c T_9^6$	$10^{41-42}T_9^6$
	$u + e \rightarrow d + \nu_e$		
Kaon Condensate	$n + K^- \rightarrow n + e + \bar{\nu}_e$	$\simeq 10^{24} T_9^6$	$10^{42}T_9^6$
	$n + e \rightarrow n + K^- + \nu_e$		
Pion condensate	$n+\pi^- \to n+e+\bar{\nu}_e$	$\simeq 10^{26} T_9^6$	$10^{44}T_9^6$
	$n + e \rightarrow n + \pi^- + \nu_e$		

At any density

Name	Process	$Q_{ m u} [{ m erg}/{ m cm}^3{ m s}]$	$L_{ u}[m erg/s]$
Mod. Urca	$n+n' \rightarrow n'+p+e+\bar{\nu}_e$	$\simeq 10^{20} T_9^8$	$10^{40}T_9^8$
	$p+e+n' \rightarrow n'+n+\nu_e$		
Bremsstrahlung	$N+N \to N+N+\nu_\ell + \bar{\nu}_\ell$	$\simeq 10^{20} T_9^8$	$10^{38}T_9^8$

$$T_n = \frac{T}{10^n \mathrm{K}}$$

Supernovae II a 000 00000000 Neutron Stars 0000000 Next Time

Checking the Urcas

Direct Urca $n \rightarrow p + e + \bar{\nu}_e$ $p + e \rightarrow n + \nu_e$

Charge Neutrality

Since gravitational attraction should win against Coulomb repulsion:

 $\frac{Ze^2}{R} \leq \frac{G(Am_b)m}{R}$

Then net charge number:

 $Z \leq \begin{cases} 10^{-39}A, \text{ electron added} \\ 10^{-36}A, \text{ proton added} \end{cases}$

Effectively: $n \rightarrow n + \nu_e + \bar{\nu}_e$

- Composition does not change, $Y_e = \text{const.}$
- $n_p = n_e$ (charge neutrality).
- But if n_p is too small since: $p_p = (3\pi^2 n_p)^{1/3}$
 - $\Rightarrow p_p \& p_e$, are too small.
- Direct Urca could only occur at high densities.

Supernovae II a 000 00000000 Neutron Stars 00000000

- Finalize review on Cooling of Neutron Stars.
- Pulsars as Neutron Stars.
- Period of rotation, speed of sound, and causality.
- Uniform Nuclear Matter.
- Equation of State for Nuclear matter.
- Beta Equilibrium.
- Size and Mass. (Chandrasekar limit).
- Overview

Supernovae II a 000 00000000 Neutron Stars 00000000 Next Time

References

D. Arnett

Supernovae and Nucleosynthesis Princeton University Press (1996)

嗪 J. N. Bahcall

Neutrino Astrophysics Cambridge University Press (1989)

A. Burrows

Nature, 403, 727 (2000)

- J. M. Lattimer and M. Prakash *Phys. Rep.*, **442**, 109 (2007)
- J. M. Lattimer and M. Prakash Science, **304**, 536 (2010)
- D. G. Yakovlev and C. J. Pethick Annu. Rev. A.&A., **42**,169(2004)