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Neutron Stars, Work of many people

Chadwick, Baade and Zwicky, Schwarzschild (photo below),
Oppenheimer and Volkoff, Tolman, Hewish and Bell (photo below)...

Jocelyn Bell Karl Schwarzschild

and many more.
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Tolman-Oppenheimer-Volkoff Equations
General Relativity

Gµν = 8πTµν

Assume spherical symmetry
Perfect fluid (Neglect viscosity).
Non-rotating body in hydrostatic equilibrium

TOV Equations
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and a supplemented equation for the baryon number:
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From GR to Newton

dM(r)

dr
= 4πEr2,

dP(r)
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= −EM
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The TOV equations reduce to
Newtons if:

1 Speed of sound is much
smaller than c:
P� E.

2 Compactness: 2M(r)
r � 1.

3 4πr3P�M(r).

Newtonian Gravity

dM(r)

dr
= 4πEr2,

dP(r)

dr
= −EM

r2
.

G = 1 and c = 1
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Very happy
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for Neutron Stars

G.R. to N.G.
1 P� E

2 2M(r)
r � 1 or 2GM(r)

r � c2

3 4πr3P�M(r)

N.S.s in few numbers:
M ∼ 1.4M�
R ∼ 12 to 14 km
nc ∼ 5 to 10× n0
(n0 ' 0.16fm−3)
T ∼ 0.5 MeV

N.S.s are compact objects
1 P ≤ E

2 gNS ∼ 1011g

2GM(r)

r
∼ 2GM

R2
R

∼ 2gNSR

∼ 2× 1016m2/s2

3 If P ∼ 1034erg/cm3 for
r ∼ R/2 then:
4πr3P ∼ 1053erg, and
M(R/2) ∼ 1054erg.

need full GR to describe N.S.s
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Equation of State

The input of the TOV Equations is the Equation of State:

P = P(E, nb, Yp)

Want to find the mass and the radius of the star.

Do these M−R agree with astronomical observations ?

Astronomical observations in principal can rule out EoS and
therefore nuclear models.
One EoS has a unique M−R family curve.
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Pure Neutron Stars
Will see:

Algorithm to solve the TOV Eqns.
Why we need interactions.

Relativistic Fermi Gas at T = 0

E =

∫
dx〈ψ† (iα · ∇+m)ψ〉

Find the energy density:

E =
m4

8π2

(
2
εfk

3
f

m4
− εfkf

m2
− log

(
εf + kf
m

))

and the pressure by:

P = n2
∂

∂n

(
E

n

)
with εf =

√
k2f +m2 and n =

k3f
3π2
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Solving the TOV Eqns.
Boundary conditions

M(r = 0) = 0

E(r = 0) = Ec A guess
P(r = 0) = Pc From EoS

Algorithm
1 Use favourite method to

advance one step: Mi+1 and
Pi+1

2 From Pi+1 use EoS to get Ei+1

3 These values are initial points
for next iteration.

4 If Pk+1 ≤ 0 then stop
⇒ Mk = M(rk) = M and
rk = R.

Notes
Each central density Ec ⇒
(M,R) point.
This complete family of
stars, with masses and radii
are determined by the EoS.
Technically is better to put
everything in km.

1 = G = 6.6726× 10−8
cm3

gs2

1 = c = 2.9979× 1010
cm
s
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Free Neutron Gas Star
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Measured and Estimated Masses118 J.M. Lattimer, M. Prakash / Physics Reports 442 (2007) 109–165

Fig. 3. Measured and estimated masses of neutron stars in radio binary pulsars (gold, silver and blue regions) and in X-ray accreting binaries (green).
For each region, simple averages are shown as dotted lines; weighted averages are shown as dashed lines. The labels (a)–(c) = [24–52] are references
cited in the bibliography. For the stars with references z-C, a lower limit to the pulsar mass of 1 M! was assumed.

Assuming that the hyperon-nucleon couplings are comparable to the nucleon-nucleon couplings typically results in
the appearance of ! and "− hyperons around 2 to 3 ns in neutron star matter [54–57]. In beta equilibrated neutron star
matter, the various chemical chemical potentials satisfy the relations #n−#p=#e=#"− and #n=#!.As a consequence,
the proton fraction in such matter is quite small, of order 5–10%. Little is known about the symmetry dependence of the
hyperon–nucleon couplings as these couplings are chiefly determined from hyperon binding energies in more or less
symmetric nuclei. If hyperons indeed appear at as low a density as 2–3 ns , the maximum neutron star mass becomes
relatively small, typically less than 1.6 M! [56].

The suggestion of Kaplan and Nelson [58] that, above some critical density, the preferred state of matter might contain
a Bose–Einstein condensate of negatively charged kaons has been examined extensively [62–68]. The astrophysical
consequences have been explored in some detail in Ref. [68]. The physics is that in medium, the strong attraction
between K− mesons and baryons increases with density and lowers the energy of the zero-momentum state. A con-
densate forms when this this energy becomes equal to the kaon chemical potential, # which is related to the electron
and nucleon chemical potentials by # = #n − #p = #e = ## due to chemical equilibrium in the various reactions.
Typically, the critical density for condensation (which depends primarily on the symmetry energy of nucleonic matter)
is ∼ (3 − 4)ns , although it is model and parameter dependent. Relative to matter without a kaon-condensed state
and depending upon the models employed, maximum masses only as high as 1.5–1.6 M! can be obtained with kaon
condensation.

If a different form of strangeness can appear prior to hyperons or Bose condensates, for example, deconfined u, d ,
and s quark matter, maximum masses up to approximately 2.0 M! are possible [69], but only with special fine-tuning
of the nucleonic and quark matter parameters. Therefore a confirmation of a neutron star mass in excess of 2 M! would
be especially interesting.



Introduction TOV Equations Equation of State Including interactions Chemical Equilibrium Constraining EoS Next

Including interactions
Many ways to describe nuclear systems because we do not know the
form of the interaction.

Ab initio methods: Use a N-N interaction (obtained from N-N
scattering) ⇒ solve the many-body problem (very hard).
Effective theories: Parametrising our ignorance (short distance
physics) with coupling constants ⇒ solve self-consistent mean
field equations (easier but very hard to go beyond mean field).

In general any nuclear model must

... reproduce Nuclear Matter
properties

n0 = 0.16 fm−3(
E

nb

)
0

= −16 MeV

K = 234 MeV

...reproduce nuclei properties:
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Relativistic Mean Field Formalism

Parametrising what we do not know...

Hadron degrees of freedom:

ψ =

(
p
n

)
.

Nucleons interact by the exchange of mesons: Sigma (σ), Omega
(ω), Rho (ρ), and the photon.
The lagrangian of the theory is:

L = LB + Le + Lσ + Lω + Lρ + Lγ + LM−M ,

Coupling constants are found by fitting to masses of magic nuclei
and properties of nuclear matter.
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Relativistic Mean Field Formalism
Uniform Nuclear Matter
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Using Yp = 0, means EoS of a liquid of neutrons.
Using our algorithm to solve the TOV equations
Find the M −R.

Neutron Star (Pure Neutron Matter)
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Neutron Star Structure
Because of cooling, glitches phenomena, spin down, it is possible that
the neutron star is not only made of neutrons...

Layers
Inner Core ⇒ Exotic
Matter?
Outer Core ⇒ Nuclear
liquid.
Inner Crust ⇒ Coulomb
Crystal +Neutron liquid
Outer Crust ⇒
Coulomb Crystal
Ocean
Atmosphere
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Chemical Equilibrium

Conserved quantities
Baryon number ⇒ µn

Electric charge ⇒ µe

Any other chemical potentials can be expressed as a linear
combination of them.νs and γs are radiated away, µν = 0 and µγ = 0.
For a particle χ:

µχ = qbχµn − qelχ µe
qbχ: Baryon number.
qelχ : Electric charge.

Examples:
n↔ p+ e+ νe, then µp = (+1)µn − (+1)µe

e↔ µ+ νe + ν̄µ then µµ = (0)µn − (−1)µe
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EoS at β Equilibrium

For a given baryon density nB
Find the composition Yp for which ∆ = µn − µp − µe = 0:

Guess the composition (YP ).
By charge neutrality ne = np = Ypnb.
Solve the nuclear many body problem
⇒ Means we have found E(nb, Yp) and P(nb, Yp)

If no β equilibrium yet: If ∆ 6= 0 ⇒ change Yp.
Otherwise sing victory.
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RMF with NL3 parametrisation
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Douchin and Haensel EoS

Try to use a unified nuclear model to describe solid crust and liquid
core.
Skyrme forces:Effective N-N interaction, an average 3-body force was
added.

Using Skyrme type forces ...
Parametrise a liquid drop model.
Use this liquid drop model to describe the crust.
Use Skyrme interaction to describe the liquid core.

F. Douchin and P. Haensel, A& A 380, 151(2001)
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Douchin and Haensel EoS

F. Douchin and P. Haensel: Equation of state of neutron star interior 161

Fig. 5. Gravitational mass versus central density, in the vicin-
ity of the minimum mass, for static neutron stars. Dotted lines
– configurations unstable with respect to small radial pertur-
bations. Minimum mass configuration is indicated by a filled
circle.

Fig. 6. Neutron star radius R versus gravitational mass M ,
with notation as in Fig. 4. Doubly hatched area is prohib-
ited by general relativity, because it corresponds to R < 9

8
rg =

9GM/4c2 (for a general proof, see Weinberg 1972). All hatched
triangle (double and single hatched) is prohibited by the gen-
eral relativity and condition vsound < c (necessary but not
sufficient for respecting causality, Olsson 2000) combined. The
shaded band corresponds to the range of precisely measured
masses of binary radio pulsars.

in hydrostatic equilibrium and collapse into black holes.
We get Mmax = 2.05 M!, to be compared with 1.80 M!
for a softer FPS EOS.

Central density of the maximum allowable mass config-
uration is the maximum one which can be reached within
static neutron stars. Models with ρc > ρc(Mmax) ≡ ρmax

Fig. 7. Surface redshift zsurf versus gravitational mass M .
Hatched area is prohibited for EOSs with vsound < c. Shaded
vertical band corresponds to the range of precisely measured
masses of binary radio pulsars. The band limited by two dashed
horizontal lines corresponds to the estimate of zsurf from the
measured spectrum of the gamma-ray burst GB 790305b.

have dM/dρc < 0. They are therefore unstable with re-
spect to small radial perturbations and collapse into black
holes (see, e.g., Shapiro & Teukolsky 1983). The max-
imum central density for static stable neutron stars is,
for our EOS, 2.9 × 1015 g cm−3, to be compared with
3.4×1015 g cm−3 for the FPS EOS. Corresponding maxi-
mum value of baryon density is nmax = 1.21 fm−3 # 7.6n0,
to be compared with 1.46 fm−3 # 9.1n0 obtained for the
FPS EOS. A complete set of parameters of configuration
with maximum allowable mass for our EOS is presented
in Table 6, where the corresponding parameters obtained
for the FPS EOS are also given for comparison.

Comparison with the APR EOS is also of interest, and
therefore we show the M(ρc) curve for this EOS. The
curve obtained for our EOS is quite close to the APR one,
especially for 1 ≤ M/M! <∼ 2. It should be mentioned,
that for ρc > 1.73 × 1015 g cm−3 the APR neutron star
models contain a central core with vsound > c, and should
therefore be taken with a grain of salt. Such a problem
does not arise for our EOS, for which vsound < c within
all stable neutron star models.

Precisely measured masses of radio pulsars in binaries
with another neutron star span the range 1.34–1.44 M!
(Thorsett & Chakrabarty 1999), visualized in Fig. 4 by
a shaded band. For neutron stars of such masses, central
density is about 1 × 1015 g cm−3, slightly below 4ρ0; this
result is nearly the same as for the APR EOS. For the
FPS EOS, neutron star of such a mass has higher central
density, about 1.3 × 1015 g cm−3 # 5ρ0.

F. Douchin and P. Haensel, A& A 380, 151(2001)
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Parallel with D&H EoS
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Still early
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M −R Compilation thanks to Lattimer and PrakashJ.M. Lattimer, M. Prakash / Physics Reports 442 (2007) 109–165 117

Fig. 2. Mass-radius trajectories for typical EOSs (see [6] for notation) are shown as black curves. Green curves (SQM1, SQM3) are self-bound quark

stars. Orange lines are contours of radiation radius, R∞ =R/

√
1 − 2GM/Rc2. The dark blue region is excluded by the GR constraint R > 2GM/c2,

the light blue region is excluded by the finite pressure constraint R > (9/4)GM/c2, and the green region is excluded by causality, R > 2.9GM/c2.
The light green region shows the region R > Rmax excluded by the 716 Hz pulsar J1748-2446ad [22] using Eq. (12). The upper red dashed curve is
the corresponding rotational limit for the 1122 Hz X-ray source XTE J1739-285 [23]; the lower blue dashed curve is the rogorous causal limit using
the coefficient 0.74 ms in Eq. (12).

3. Recent mass measurements and their implications

Several recent observations of neutron stars have direct bearing on the determination of the maximum mass. The
most accurately measured masses are from timing observations of the radio binary pulsars. As shown in Fig. 3, which is
compilation of the measured neutron star masses as of November 2006, observations include pulsars orbiting another
neutron star, a white dwarf or a main-sequence star. The compact nature of several binary pulsars permits detection of
relativistic effects, such as Shapiro delay or orbit shrinkage due to gravitational radiation reaction, which constrains
the inclination angle and allows the measurement of each mass in the binary. A sufficiently well-observed system can
have masses determined to impressive accuracy. The textbook case is the binary pulsar PSR 1913 + 16, in which the
masses are 1.3867 ± 0.0002 and 1.4414 ± 0.0002 M#, respectively [40].

One significant development concerns mass determinations in binaries with white dwarf companions, which show
a broader range of neutron star masses than binary neutron star pulsars. Perhaps a rather narrow set of evolutionary
circumstances conspire to form double neutron star binaries, leading to a restricted range of neutron star masses [53].
This restriction is likely relaxed for other neutron star binaries. Evidence is accumulating that a few of the white dwarf
binaries may contain neutron stars larger than the canonical 1.4 M# value, including the intriguing case [45] of PSR
J0751 + 1807 in which the estimated mass with 1! error bars is 2.1 ± 0.2 M#. In addition, to 95% confidence, one of
the two pulsars Ter 5 I and J has a reported mass larger than 1.68 M# [43].

Whereas the observed simple mean mass of neutron stars with white dwarf companions exceeds those with neutron
star companions by 0.25 M#, the weighted means of the two groups are virtually the same. The 2.1 M# neutron star,
PSR J0751 + 1807, is about 4! from the canonical value of 1.4 M#. It is furthermore the case that the 2! errors of
all but two systems extend into the range below 1.45 M#, so caution should be exercised before concluding that firm
evidence of large neutron star masses exists. Continued observations, which will reduce the observational errors, are
necessary to clarify this situation.

Masses can also be estimated for another handful of binaries which contain an accreting neutron star emitting X-rays,
as shown in Fig. 3. Some of these systems are characterized by relatively large masses, but the estimated errors are also
large. The system of Vela X-1 is noteworthy because its lower mass limit (1.6–1.7 M#) is at least mildly constrained
by geometry [26].

Raising the limit for the neutron star maximum mass could eliminate entire families of EOSs, especially those in
which substantial softening begins around 2 to 3ns . This could be extremely significant, since exotica (hyperons, Bose
condensates, or quarks) generally reduce the maximum mass appreciably.
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2M� N.S. observed [7]

12 January 2011 Physics Today © 2011 American Institute of Physics, S-0031-9228-1101-320-2

The largest neutron-star mass yet
recorded has broad implications 
If neutron stars can be twice as massive as the Sun, most conjectures about
exotic states of matter at maximum compression are ruled out.

Neutron stars are presumed to con-
tain the densest matter in the cosmos.
These remnants of core-collapse super-
novae pack more than the Sun’s mass
(M!) into a sphere less than 30 km across.
There is considerable uncertainty about
the character of matter squeezed to such
ultrahigh densities, which cannot be re-
produced in the laboratory.

As the name implies, much of a
 neutron star’s interior is probably just
neutrons packed together at a density
of about 1015 g/cm3—a few times that of
a typical nucleus. The protons and elec-
trons of the progenitor material have
mostly merged into neutrons by inverse
beta decay.

Theorists speculate, however, that at
the highest densities near the cores of the
most massive neutron stars there may be
phase boundaries that enclose more ex-
otic states: free-quark matter rich in
strange quarks, Bose–Einstein conden-
sates of K mesons, or simply  nuclear
matter in which a significant fraction of
the neutrons have become hyperons
(baryons harboring strange quarks).

But now much of that speculation
has abruptly been laid to rest by a single
astrophysical weighing. Using the Na-
tional Radio Astronomy Observatory’s
100-meter-diameter telescope in Green
Bank, West Virginia, NRAO’s Paul De-
morest and coworkers have measured
the highest neutron-star mass ever de-
termined in a precision weighing.1 The
neutron star in the binary-pulsar 
system J1614−2230, they report, has a
mass of 1.97 ± 0.04 M!. The previous
record was 1.67 ± 0.01 M!. 

Ruling out exotic cores
Now we know for the first time that
neutron stars can be twice as massive as
the Sun. So what? “Actually, it’s quite
amazing how much that simple fact tells
you,” says NRAO team member Scott
Ransom. To begin with, it rules out most
of the proposed equations of state
(EOSs) that predict exotic phases for suf-
ficiently compressed nuclear matter.

Every putative EOS is characterized
by some maximum neutron-star mass
Mmax beyond which collapse to a black

hole would be inevitable. It turns out
that the predicted Mmax is generally
smaller for EOSs that allow transitions
to exotic phases than for those that
don’t. In effect, the extra degrees of free-
dom introduced by the possibility of
such transitions make the star less re-
sistant to contraction.

Both nuclear and quark matter are
fermionic systems of spin-1⁄2 particles for
which the Pauli exclusion principle dic-
tates that increasing compression
 requires increasing particle momenta.
Conjectures of exotic fermionic phases
with abundant hyperons or strange
quarks are speculative attempts to
lower ground-state energies by mitigat-
ing the exclusion principle’s energy

cost. So is the introduction of bosonic
meson condensates.

For various classes of proposed
EOSs, figure 1 shows the range of pre-
dicted Mmax and, below those upper
limits, the dependence of a neutron
star’s radius on its mass. For almost all
EOSs that yield exotic hadronic matter
(hyperons, kaonic Bose condensates,
and the like) the mass–radius tracks ter-
minate well below the newly measured
J1614 mass, and they are therefore ruled
out by that measurement.

Some EOSs that yield strange-quark
matter are barely consistent with the
new record mass, but only if the quarks,
far from being “free,” interact almost as
strongly as they do in hadrons. Such

&

Figure 1. Predicted dependence of a neutron star’s radius on its mass is shown for
various classes of proposed equations of state (EOSs) that yield different phases of
matter at maximum compression: neutron matter (blue), exotic hadronic matter
(pink), and strange-quark matter (green). Each swath’s upper edge indicates the

range of maximum masses allowed by that EOS class. The horizontal red bands show

individual precision mass measurements, and the wider yellow band shows a range

of measurements from double-neutron-star binaries. The highest band, marking the

neutron-star mass measured in the binary pulsar J1614−2230, rules out any EOS
whose maximum allowed mass falls short of it. The gray corner regions were already

ruled out by other observational or theoretical constraints. (Adapted from ref. 1.)
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Constraints from Heaven
As we said last talk, cooling observations, also ...

M −R from Observations, Steiner et al. [4]
Combine observations of 6 neutron stars.
Two types: X-ray bursts and Neutron Stars in globular clusters.
⇒ Observations favour stiff high density EoS.
⇒ EoS does not favour a phase transition to exotic matter.
⇒ EoS can support 2M�.
⇒ EoS is soft at low densities, then a 1.4M� star has a 12km

radius.
⇒ EoS has associated a Rn −Rp = 0.15± 0.02fm for 208Pb.

M −R from Observations, Ozel et al. [5]
Same than above, but with a different model for X-ray bursts.
⇒ EoS favour softer high density EoS.
⇒ EoS can support 2M�.
⇒ EoS is soft at low densities, then a 1.4M� star has a 10km

radius.
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Constraints on Earth
Parametrising what we do not know here too:

E(nb, Yp) = E(nb, Yp = 1/2) + S(nb)(1− 2Yp)
2 + O(Yp)

Heavy Ion Collisions
(HIC)

Au+Au collisions
(19779 +197 79).
Incident kinetic
energy of 394GeV.
Using a transport
model, extract
dS/dnb.
Not completely
conclusive.

Figure: Constraint on compression modulus
with HIC

er deflections.) The open and solid points in
Fig. 2 show measured values for the directed
transverse flow in collisions of 197Au projec-
tile and target nuclei at incident kinetic ener-
gies Ebeam/A, ranging from about 0.15 to 10
GeV per nucleon (29.6 to 1970 GeV total
beam kinetic energies) and at impact param-
eters of b ! 5 to 7 fm (5 " 10#13 to 7 "
10#13 cm) (13–16). The scale at the top of
this figure provides theoretical estimates for
the maximum densities achieved at selected
incident energies. The maximum density in-
creases with incident energy; the flow data
are most strongly influenced by pressures
corresponding to densities that are somewhat
less than these maximum values.

The data in Fig. 2 display a broad maxi-
mum centered at an incident energy of about
2 GeV per nucleon. The short dashed curve
labeled “cascade” shows results for the trans-
verse flow predicted by Eq. 1, in which the
mean field is neglected. The disagreement of
this curve with the data shows that a repulsive
mean field at high density is needed to repro-
duce these experimental results. The other
curves correspond to predictions using Eq. 1
and mean field potentials of the form

U ! $a% " b%&)/[1'(0.4%/%0)&–1] ' (Up

(5)

Here, the constants a, b, and & are chosen to
reproduce the binding energy and the satura-
tion density of normal nuclear matter while
providing different dependencies on density
at much higher density values, and (Up de-
scribes the momentum dependence of the
mean field potential (28, 33, 34) (see SOM
text). These curves are labeled by the curva-

ture K § 9 dp/d%)s/% of each EOS about the
saturation density %0. Calculations with larger
values of K, for the mean fields above, gen-
erate larger transverse flows, because those
mean fields generate higher pressures at high
density. The precise values for the pressure at
high density depend on the exact form chosen
for U. To illustrate the dependence of pres-
sure on K for these EOSs, we show the
pressure for zero temperature symmetric
matter predicted by the EOSs with K ! 210
and 300 MeV in Fig. 3. The EOS with K !
300 MeV generates about 60% more pres-
sure than the one with K ! 210 MeV at
densities of 2 to 5 %0 (Fig. 3).

Complementary information can be ob-
tained from the elliptic flow or azimuthal
anisotropy (in-plane versus out-of-plane
emission) for protons (24, 25, 36). This is
quantified by measuring the average value
*cos2+,, where + is the azimuthal angle of
the proton momentum relative to the x axis
defined in Fig. 1. (Here, tan+ ! py/px , where
px and py are the in-plane and out-of-plane
components of the momentum perpendicular
to the beam.) Experimental determinations of
*cos2+, include particles that, in the cen-
ter-of-mass frame, have small values for the
rapidity y and move mainly in directions
perpendicular to the beam axis. Negative val-
ues for *cos2+, indicate that more protons
are emitted out of plane (+ - 90°or + -
270°) than in plane (+ - 0°or + - 180°), and
positive values for *cos2+, indicate the
reverse situation.

Experimental values for *cos2+, for in-
cident kinetic energies Ebeam/A ranging from
0.4 to 10 GeV per nucleon (78.8 to 1970 GeV
total beam kinetic energies) and impact pa-
rameters of b ! 5 to 7 fm (5 x 10#13 to 7 "
10#13 cm) (17–19) are shown in Fig. 4. Neg-
ative values for *cos2+,, reflecting a pref-
erential out-of-plane emission, are observed
at energies below 4 GeV/A, indicating that
the compressed region expands while the

spectator matter is present and blocks the
in-plane emission. Positive values for
*cos2+,, reflecting a preferential in-plane
emission, are observed at higher incident en-
ergies, indicating that the expansion occurs
after the spectator matter has passed the com-
pressed zone. The curves in Fig. 4 indicate
predictions for several different EOSs. Cal-
culations without a mean field, labeled “cas-
cade,” provide the most positive values for
*cos2+,. More repulsive, higher-pressure
EOSs with larger values of K provide more
negative values for *cos2+, at incident en-
ergies below 5 GeV per nucleon, reflecting a
faster expansion and more blocking by the
spectator matter while it is present.

Transverse and elliptic flows are also in-
fluenced by the momentum dependencies
(Up of the nuclear mean fields and the scat-
tering by the residual interaction within the
collision term I indicated in Eq. 1. Experi-
mental observables such as the values for
*cos2+, measured for peripheral collisions,
where matter is compressed only weakly and
is far from equilibrated (28), now provide
significant constraints on the momentum de-
pendence of the mean fields (21, 28). This is
discussed further in the SOM (see SOM text).
The available data (30) constrain the mean-
field momentum dependence up to a density
of about 2 %0. For the calculated results
shown in Figs. 2 to 4, we use the momentum
dependence characterized by an effective
mass m* ! 0.7 mN, where mN is the free
nucleon mass, and we extrapolate this depen-
dence to still higher densities. We also make
density-dependent in-medium modifications
to the free nucleon cross-sections following
Danielewicz (28, 32) and constrain these

Fig. 2. Transverse flow results. The solid and
open points show experimental values for the
transverse flow as a function of the incident
energy per nucleon. The labels “Plastic Ball,”
“EOS,” “E877,” and “E895” denote data taken
from Gustafsson et al. (13), Partlan et al. (14),
Barrette et al. (15), and Liu et al. (16), respec-
tively. The various lines are the transport the-
ory predictions for the transverse flow dis-
cussed in the text. %max is the typical maximum
density achieved in simulations at the respec-
tive energy.

Fig. 3. Zero-temperature EOS for symmetric
nuclear matter. The shaded region corresponds
to the region of pressures consistent with the
experimental flow data. The various curves and
lines show predictions for different symmetric
matter EOSs discussed in the text.

Fig. 4. Elliptical flow results. The solid and open
points show experimental values for the ellip-
tical flow as a function of the incident energy
per nucleon. The labels “Plastic Ball,” “EOS,”
“E895,” and “E877” denote the data of Gutbrod
et al. (17), Pinkenburg et al. (18), Pinkenburg et
al. (18), and Braun-Munzinger and Stachel (19),
respectively. The various lines are the transport
theory predictions for the elliptical flow dis-
cussed in the text.
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Constraints on Earth
Neutron skin of 208Pb:

δR = Rn −Rp

Lead Radius Experiment
Correlation between δR and RNS ⇒ constrains the EoS at
about 2/3 n0

Since it is an electron nucleus scattering, unambiguous
interpretation.
Complement HIC constraints on EoS.
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Last but not least
Gravitational wave observations: advance LIGO, advance
VIRGO, LISA, etc., observations can impose constrains on the
shape of N.S.s, as well as the structure of the crust. How strong
is the crust depends on EoS.
Accreting NS.s: There are observations of accreting neutron
stars, particularly, after quiescence, related to how the crust cools
down.
Rotating N.S.s and EoS: The general case of rotating stars has
been studied, when rotation is added larger masses are possible.
Experiments of neutron-rich nuclei: Experimental efforts towards
the neutron drip line can help to improve our current nuclear
models and make the interpolation to 1014 orders of magnitude, a
bit more reliable.
Other layers: The crust, ocean, and the atmosphere are
important to interpret observations.
Exotic matter: Part of the work is what are the signatures of
exotic matter, depends strongly on interpretations of the
astronomical observations.
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