Statistical mechanics

- Large systems
- Finite temperature
- Grand canonical ensemble
- Statistical operator $\quad \hat{\rho}_{G}=\frac{e^{-\beta(\hat{H}-\mu \hat{N})}}{Z_{G}}$
- with $\beta=\left(k_{B} T\right)^{-1}$
- and μ chemical potential
- Grand partition function

$$
\begin{aligned}
Z_{G} & =\operatorname{Tr}\left(e^{-\beta(\hat{H}-\mu \hat{N})}\right) \\
& =\sum_{N} \sum_{n}\left\langle\Psi_{n}^{N}\right| e^{-\beta(\hat{H}-\mu \hat{N})}\left|\Psi_{n}^{N}\right\rangle=\sum_{N} \sum_{n} e^{-\beta\left(E_{n}^{N}-\mu N\right)}
\end{aligned}
$$

Thermodynamic potential

- Standard result
- and therefore
- Ensemble averages

$$
\begin{aligned}
& \Omega(T, V, \mu)=-k_{B} T \ln Z_{G} \\
& \hat{\rho}_{G}=e^{\beta(\Omega-\hat{H}+\mu \hat{N})} \\
& \langle\hat{O}\rangle=\operatorname{Tr}\left(\hat{\rho}_{G} \hat{O}\right)=\frac{\operatorname{Tr}\left(e^{-\beta(\hat{H}-\mu \hat{N}} \hat{O}\right)}{\operatorname{Tr}\left(e^{-\beta(\hat{H}-\mu \hat{N})}\right)}
\end{aligned}
$$

- Noninteracting systems replace $\hat{H} \rightarrow \hat{H}_{0}$
- Summing over complete sets of states in Fock space can also be accomplished by summing over all possible occupations of $s p$ states in occupation number representation!
- Replace relevant operators by eigenvalues: $\left.\hat{H}_{0}\left|n_{1} \ldots n_{\infty}\right\rangle=\sum_{i} n_{\varepsilon_{i}}| | n_{1} \ldots n_{\infty}\right\rangle$
- Apply

$$
\begin{aligned}
Z_{0} & =\sum_{n_{1} \ldots n_{\infty}}\left\langle n_{1} \ldots n_{\infty}\right| e^{-\beta\left(\hat{H}_{0}-\mu \hat{N}\right)}\left|n_{1} \ldots n_{\infty}\right\rangle \\
& =\sum_{n_{1} \ldots n_{\infty}}\left\langle n_{1} \ldots n_{\infty}\right| e^{-\beta\left(\sum_{i} \varepsilon_{i} n_{i}-\mu \sum_{i} n_{i}\right)}\left|n_{1} \ldots n_{\infty}\right\rangle \\
& =\sum_{n_{1} \ldots n_{\infty}}^{\infty} \exp \left\{\beta\left(\mu n_{1}-\varepsilon_{1} n_{1}\right)\right\} \ldots \exp \left\{\beta\left(\mu n_{\infty}-\varepsilon_{\infty} n_{\infty}\right)\right\} \\
& =\prod_{i=1}^{\infty} \operatorname{Tr}\left(\exp \left\{-\beta\left(\varepsilon_{i}-\mu\right) n_{i}\right\}\right)
\end{aligned}
$$

$$
\hat{N}\left|n_{1} \ldots n_{\infty}\right\rangle=\sum_{i} n_{i}\left|n_{1} \ldots n_{\infty}\right\rangle
$$

Noninteracting grand partition function

- Yields $Z_{0}=\sum_{n_{1} \ldots n_{\infty}} \exp \left\{\beta\left(\mu n_{1}-\varepsilon_{1} n_{1}\right)\right\} \ldots \exp \left\{\beta\left(\mu n_{\infty}-\varepsilon_{\infty} n_{\infty}\right)\right\}$

$$
=\prod_{i=1}^{\infty} \operatorname{Tr}\left(\exp \left\{-\beta\left(\varepsilon_{i}-\mu\right) n_{i}\right\}\right)
$$

- with Tr including a summation over possible occupation numbers
- Bosons: all occupation numbers possible

$$
Z_{0}^{B}=\prod_{i=1}^{\infty} \sum_{n=0}^{\infty}\left[\exp \left\{\beta\left(\mu-\varepsilon_{i}\right)\right\}\right]^{n}=\prod_{i=1}^{\infty}\left[1-\exp \left\{\beta\left(\mu-\varepsilon_{i}\right)\right\}\right]^{-1}
$$

- Thermodynamic potential $\Omega_{0}^{B}(T, V, \mu)=-k_{B} T \ln \prod_{i=1}^{\infty}\left[1-\exp \left\{\beta\left(\mu-\varepsilon_{i}\right)\right\}\right]^{-1}$
- Average particle number

$$
=k_{B} T \sum_{i=1}^{\infty} \ln \left[1-\exp \left\{\beta\left(\mu-\varepsilon_{i}\right)\right\}\right]
$$

$$
\begin{aligned}
& N=\langle N\rangle=-\left(\frac{\partial \Omega_{0}^{B}}{\partial \mu}\right)_{T V} \\
& \langle N\rangle \equiv \sum_{i=1}^{\infty} n_{i}^{0}=\sum_{i=1}^{\infty} \frac{1}{\exp \left\{\beta\left(\varepsilon_{i}-\mu\right)\right\}-1}
\end{aligned}
$$

Noninteracting fermions at finite T

- Restriction to 0 and 1 for occupation numbers

$$
Z_{0}^{F}=\prod_{i=1}^{\infty} \sum_{n=0}^{1}\left[\exp \left\{\beta\left(\mu-\varepsilon_{i}\right)\right\}\right]^{n}=\prod_{i=1}^{\infty}\left[1+\exp \left\{\beta\left(\mu-\varepsilon_{i}\right)\right\}\right]
$$

- Thermodynamic potential

$$
\Omega_{0}^{F}(T, V, \mu)=-k_{B} T \sum_{i=1}^{\infty} \ln \left[1+\exp \left\{\beta\left(\mu-\varepsilon_{i}\right)\right\}\right]
$$

- Particle number

$$
\langle N\rangle \equiv \sum_{i=1}^{\infty} n_{i}^{0}=\sum_{i=1}^{\infty} \frac{1}{\exp \left\{\beta\left(\varepsilon_{i}-\mu\right)\right\}+1}
$$

BEC in infinite systems

- Ground state of noninteracting bosons: all in lowest sp level
- This limit is approached when $\mathrm{T} \rightarrow 0$
- boson spectrum $\varepsilon(k)=\frac{\hbar^{2} k^{2}}{2 m}$
- As before

$$
\sum_{i} \rightarrow \frac{\nu V}{(2 \pi)^{3}} \int d \boldsymbol{k}
$$

- Transform to energy integral

$$
\frac{\nu V}{(2 \pi)^{3}} 4 \pi k^{2} d k=\frac{\nu V}{2 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \frac{\varepsilon d \varepsilon}{2 \varepsilon^{1 / 2}}=\frac{\nu V}{4 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \varepsilon^{1 / 2} d \varepsilon
$$

- Thermodynamic potential

$$
\begin{aligned}
\Omega_{0}^{B} & =k_{B} T \frac{\nu V}{4 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \int_{0}^{\infty} d \varepsilon \varepsilon^{1 / 2} \ln [1-\exp \{\beta(\mu-\varepsilon)\}] \\
& =-\frac{\nu V}{4 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \frac{2}{3} \int_{0}^{\infty} d \varepsilon \frac{\varepsilon^{3 / 2}}{\exp \{\beta(\varepsilon-\mu)\}-1}
\end{aligned}
$$

BEC

- Energy $E=\sum_{i} n_{i}^{0} \varepsilon_{i}=\frac{\nu V}{4 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \int_{0}^{\infty} d \varepsilon \frac{\varepsilon^{3 / 2}}{\exp \{\beta(\varepsilon-\mu)\}-1}$
- Particle number

$$
N=\sum_{i} n_{i}^{0}=\frac{\nu V}{4 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \int_{0}^{\infty} d \varepsilon \frac{\varepsilon^{1 / 2}}{\exp \{\beta(\varepsilon-\mu)\}-1}
$$

- Note $\Omega=-P V$ so one confirms ideal gas $P V=\frac{2}{3} E$
- Denominator represents occupation so may not become negative so chemical potential such that $\varepsilon-\mu \geq 0$ so here $\mu \leq 0$
- Fix density and lower temperature: $|\mu|$ should decrease
- The limit $\mu=0$ for $N=\frac{\nu V}{4 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \int_{0}^{\infty} d \varepsilon \frac{\varepsilon^{1 / 2}}{\exp \left\{\varepsilon / k_{B} T_{0}\right\}-1}$

$$
\begin{aligned}
& =\frac{\nu V}{4 \pi^{2}}\left(\frac{2 m k_{B} T_{0}}{\hbar^{2}}\right)^{3 / 2} \int_{0}^{\infty} d x \frac{x^{1 / 2}}{\exp (x)-1} \\
& =\frac{\nu V}{4 \pi^{2}}\left(\frac{2 m k_{B} T_{0}}{\hbar^{2}}\right)^{3 / 2} \zeta\left(\frac{3}{2}\right) \frac{1}{2} \sqrt{\pi}
\end{aligned}
$$

- Rewrite

$$
\begin{gathered}
\text { BEC } \\
T_{0}=\frac{3.31}{\nu^{2 / 3}} \frac{\hbar^{2}}{m k_{B}}\left(\frac{N}{V}\right)^{2 / 3}
\end{gathered}
$$

- with $\zeta\left(\frac{3}{2}\right)=2.612$
atures below T_{0} integral only yields particles with $\quad \varepsilon>0$ so those particles represented by $N_{\varepsilon>0}(T)=N\left(\frac{T}{T_{0}}\right)^{3 / 2}$
- Remaining particles must all have $\varepsilon=0$

$$
N_{\varepsilon=0}(T)=N\left[1-\left(\frac{T}{T_{0}}\right)^{3 / 2}\right]
$$

- Macroscopic occupation $(\sim N)$ of single state \rightarrow BEC

BEC for ${ }^{4} \mathrm{He}$

- Check that at T_{0} there is a discontinuity in the slope of the specific heat (see Fetter and Walecka)
- For ${ }^{4} \mathrm{He}$ with $\rho=0.145 \mathrm{~g} \mathrm{~cm}^{-3} \quad T_{0}=3.14 \mathrm{~K}$
- Experimental transition at $T_{0}=2.2 \mathrm{~K}$ and ...
- called

λ transition
No ~ 10\%

Tilley \& Tilley
Superfluidity \& Superconductivity

- Superfluidity \neq ideal gas but transition still related to BEC!?

BEC in traps

- Laser cooling \& magneto-optical trapping techniques
- Evaporative cooling
- Atomic gases are metastable
-Why?
- Temperatures 500 nK to $2 \mu \mathrm{~K}$
- Densities few $\times 10^{14}$ atoms $/ \mathrm{cm}^{3}$
- Scales 10 s to 100 s of $\mu \mathrm{m}$
- Magnetic traps for alkali atoms look like harmonic oscillators with different oscillator lengths

$$
V_{e x t}(\boldsymbol{r})=\frac{1}{2} m\left(\omega_{x}^{2} x^{2}+\omega_{y}^{2} y^{2}+\omega_{z}^{2} z^{2}\right)
$$

The Nobel Prize in Physics 2001
"for the achievement of Bose-Einstein condensation in dilute gases of alkali atoms, and for early fundamental studies of the properties of the condensates"

Eric A. Cornell
Q $1 / 3$ of the prize
USA

University of Colorado,
JILA
Boulder, CO, USA
b. 1961

Wolfgang Ketterle
Q $1 / 3$ of the prize
Federal Republic of Germany

Massachusetts Institute of Technology (MIT) Cambridge, MA, USA
b. 1957

Carl E. Wieman (Q1/3 of the prize USA

University of Colorado, JILA Boulder, CO, USA
b. 1951

Oscillators

- Eigenvalues

$$
\varepsilon_{n_{x} n_{y} n_{z}}=\left(n_{x}+\frac{1}{2}\right) \hbar \omega_{x}+\left(n_{y}+\frac{1}{2}\right) \hbar \omega_{y}+\left(n_{z}+\frac{1}{2}\right) \hbar \omega_{z}
$$

- Ground state: all atoms in state with $n_{x}=n_{y}=n_{z}=0$
- Wave function $\phi_{000}(r)=\left(\frac{m \omega_{H O}}{\pi \hbar}\right)^{3 / 4} \exp \left\{-\frac{m}{2 \hbar}\left(\omega_{x} x^{2}+\omega_{y} y^{2}+\omega_{z} z^{2}\right)\right\}$
- with $\omega_{H O}=\left(\omega_{x} \omega_{y} \omega_{z}\right)^{1 / 3}$
- N bosons in this sp state $\left|\Phi_{0}^{N}\right\rangle=\frac{1}{\sqrt{N!}}\left(a_{000}^{\dagger}\right)^{N}|0\rangle$
- Calculate density $\rho(r)=N\left|\phi_{000}(r)\right|^{2}$ grows with N
- shape does not and is determined by trap potential: $a_{\text {HO }}=\left(\frac{\hbar}{m \omega_{\text {HO }}}\right)^{1 / 2}$
- Actual scale $a_{\text {но }} \approx 1 \mu \mathrm{~m}$
- Finite temperature: atoms occupy excited states
- For $k_{B} T \gg \hbar \omega_{H O}$ use classical Boltzmann distribution
- spherical $\rho_{d}(r) \propto \exp \left\{-\frac{V_{e+t}(r)}{k_{B} T}\right\}$
(Landau\&Lifshitz)
- If $V_{\text {eet }(r)}=\frac{1}{2} m \omega_{H O}^{2} r^{2} \quad$ width $\quad R_{T}=a_{H O}\left(\frac{k_{B} T}{\hbar \omega_{H O}}\right)^{1 / 2}$

BEC observation

- BEC observed in the form of sharp peak in the center
- Wave function in momentum space also Gaussian: width $\propto a_{H O}^{-1}$
- So both in coordinate space and momentum space
- Infinite system all particles zero momentum but no signature in coordinate space
- Observe velocity distribution/ density distribution

Anderson et al.
Science 269, 198 (1995)
Rubidium atoms (velocity)
left: just above condensation middle: just after
right: further cooled asymmetric trap

Trapped bosons at finite temperature

- Interaction between bosons important for the actual shapes
- Still useful considerations for noninteracting bosons
- Number
- Energy

$$
\begin{aligned}
& N=\sum_{n_{x} n_{y} n_{z}} \frac{1}{\exp \left\{\beta\left(\varepsilon_{n_{x} n_{y} n_{z}}-\mu\right)\right\}-1} \\
& E=\sum_{n_{x} n_{y} n_{z}} \frac{\varepsilon_{n_{x} n_{y} n_{z}}}{\exp \left\{\beta\left(\varepsilon_{n_{x} n_{y} n_{z}}-\mu\right)\right\}-1}
\end{aligned}
$$

- Usual thermodynamic limit not possible
- Still separate lowest state from the sum with N_{0}
- As for infinite system: can be of order N when $\mu \rightarrow \mu_{c}=\frac{3}{2} \hbar \bar{\omega}$
- with $\bar{\omega}=\left(\omega_{x}+\omega_{y}+\omega_{z}\right) / 3$
- This limit is reached for a critical temperature $T=T_{c}$

Convert to integrals

- Rewrite particle number

$$
N-N_{0}=\sum_{n_{x} \neq 0, n_{y} \neq 0, n_{z} \neq 0} \frac{1}{\exp \left\{\beta \hbar\left(\omega_{x} n_{x}+\omega_{y} n_{y}+\omega_{z} n_{z}\right)\right\}-1}
$$

- do numerically or for $N \rightarrow \infty$

$$
N-N_{0}=\int_{0}^{\infty} d n_{x} d n_{y} d n_{z} \frac{1}{\exp \left\{\beta \hbar\left(\omega_{x} n_{x}+\omega_{y} n_{y}+\omega_{z} n_{z}\right)\right\}-1}
$$

- semiclassical description: excitation energies \gg level spacing
- valid for large N and $k_{B} T \gg \hbar \omega_{H O}$
- Integrate: $N-N_{0}=\zeta(3)\left(\frac{k_{B} T}{\hbar \omega_{H O}}\right)^{3} \quad \zeta(3) \approx 1.202$
- Imposing $\quad N_{0} \rightarrow 0$ at T_{c}
- yields

$$
\begin{aligned}
& k_{B} T_{c}=\hbar \omega_{H O}\left(\frac{N}{\zeta(3)}\right)^{1 / 3}=0.94 \hbar \omega_{\text {HO }} N^{1 / 3} \\
& \frac{N_{0}}{N}=1-\left(\frac{T}{T_{c}}\right)^{3}
\end{aligned}
$$

- or
- Evaluate energy similarly etc.
- Interaction important as are finite size corrections

Gross-Pitaevskii (GP) equation

- Dilute system: average interparticle spacing $\rho^{-1 / 3}$ large compared to magnitude of scattering length, or $\rho|a|^{3} \ll 1$
- Previous discussion suggests that HB mean-field can be applied in dilute case: replace V (even if strong) with the pseudo potential
- HB potential then becomes $W_{H B}(\boldsymbol{r})=g(N-1)\left|\phi_{c}(\boldsymbol{r})\right|^{2} \approx g N\left|\phi_{c}(\boldsymbol{r})\right|^{2}$
- HB equation $\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+U(\boldsymbol{r})\right] \phi_{c}(\boldsymbol{r})+g N\left|\phi_{c}(\boldsymbol{r})\right|^{2} \phi_{c}(\boldsymbol{r})=\mu \phi_{c}(\boldsymbol{r})$
- Looks like nonlinear Schrödinger equation and is referred to as the time-independent Gross-Pitaevskii equation
- Condensate orbital also minimizes (with $\int d r\left|\phi_{c}(r)\right|^{2}=1$)

$$
E_{0}^{G P} / N=\int d \boldsymbol{r}\left(\frac{\hbar^{2}}{2 m}\left|\nabla \phi_{c}(\boldsymbol{r})\right|^{2}+U(\boldsymbol{r})\left|\phi_{c}(\boldsymbol{r})\right|^{2}+\frac{g N}{2}\left|\phi_{c}(\boldsymbol{r})\right|^{4}\right)
$$

- Time-dependent GP equation

$$
\left[-\frac{1}{2 m} \nabla^{2}+U(\boldsymbol{r} ; t)\right] \phi_{c}(\boldsymbol{r} ; t)+g N\left|\phi_{c}(\boldsymbol{r}, \boldsymbol{t})\right|^{2} \phi_{c}(\boldsymbol{r} ; t)=i \hbar \frac{\partial}{\partial t} \phi_{c}(\boldsymbol{r} ; t)
$$

- GP and GP(t) all that is needed to explain most data BEC

Confined bosons in harmonic traps

- Confining potential well approximated by HO

$$
U(\boldsymbol{r})=\frac{m}{2}\left(\omega_{x}^{2} x^{2}+\omega_{y}^{2} y^{2}+\omega_{z}^{2} z^{2}\right)
$$

- usually with cylindrical symmetry (cigar or pancake)
- Include interaction at the GP level
- Effect can be large even when the system is dilute
- Estimate: assume condensate wave function approximately HO ground state $\phi_{000}(r)$ (see Ch. 5)
- Central density of condensate $\rho(0)=N\left|\phi_{c}(0)\right|^{2} \approx N\left(\frac{m \omega_{H O}}{\pi \hbar}\right)^{3 / 2}=\frac{N}{\pi^{3 / 2} a_{H O}^{3}}$
- Typical values: $10^{3}<\mathrm{N}<10^{6}$, $|\mathrm{a}| \sim 10^{-9} \mathrm{~m}, \mathrm{aHO} \sim 10^{-6} \mathrm{~m}$ so $10^{-6}<\rho|a|^{3}<10^{-3}$
- So very dilute
- Consider mean-field potential $W_{H B}(0)=g N\left|\phi_{c}(0)\right|^{2} \approx N \frac{a}{a_{H O}^{3}} \frac{4 \hbar^{2}}{m \sqrt{\pi}}$

BEC in traps at the GP level

- Compare with HO energy scale $\hbar \omega_{H O}=\frac{\hbar^{2}}{m a_{\text {HO }}^{2}}$
- Ratio proportional to $u=N \frac{a}{a_{H O}}$
- Measure of strength of interaction effects
- For quoted values $1<|u|<10^{3}$
- So expect large deviations of GP w.r.t. noninteracting profile
- Example u~125

$$
a=2.75 \mathrm{~nm} \text { and } a_{\text {HO }}=1.76 \mu \mathrm{~m}
$$

- Column density $\bar{\rho}(z)=\int d y \rho(0, y, z)$
- $8 \times 10^{4} 23 \mathrm{Na}$ atoms
- Trap $\omega_{x}=\omega_{y}=2050 \mathrm{rad} / \mathrm{s}$ and $\omega_{z}=170 \mathrm{rad} / \mathrm{s}$
- Reduction of 12 w.r.t. HO only

