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Statistical mechanics
• Large systems 
• Finite temperature 
• Grand canonical ensemble 
• Statistical operator 
• with 
• and        chemical potential 
• Grand partition function 
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e��(Ĥ�µN̂)

ZG

� = (kBT )�1

µ

ZG = Tr
�
e��(Ĥ�µN̂)
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Thermodynamic potential
• Standard result 
• and therefore 
• Ensemble averages 
• Noninteracting systems replace 
• Summing over complete sets of states in Fock space can also be 

accomplished by summing over all possible occupations of sp 
states in occupation number representation! 

• Replace relevant operators by eigenvalues: 
• Apply
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e��(Ĥ�µN̂)Ô
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Noninteracting grand partition function
• Yields 
!

!

• with Tr including a summation over possible occupation numbers  
• Bosons: all occupation numbers possible 
!

• Thermodynamic potential 
!

• Average particle number
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Noninteracting fermions at finite T
• Restriction to 0 and 1 for occupation numbers 
!

!

!

• Thermodynamic potential 
!

!

• Particle number
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BEC in infinite systems
• Ground state of noninteracting bosons: all in lowest sp level 

• This limit is approached when T → 0 

• boson spectrum 

• As before 

• Transform to energy integral 

!

• Thermodynamic potential
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BEC
• Energy 
!

• Particle number 
!

• Note                      so one confirms ideal gas 

• Denominator represents occupation so may not become negative 
so chemical potential such that                   so here 

• Fix density and lower temperature:       should decrease 
• The limit             for    
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BEC
• Rewrite 
!

• with                                      Riemann   -function 
!

• For temperatures below            
integral only yields particles with 
so those particles represented by 

• Remaining particles must all have 
!

!

• Macroscopic occupation (~   ) of single state → BEC
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BEC for 4He
• Check that at     there is a discontinuity in the slope of the 

specific heat (see Fetter and Walecka) 
• For 4He with 
• Experimental transition at                     and ...  
• called                                                            λ transition 
•                                                                       N0 ~ 10% 
!

!

!

!

!

•  Superfluidity ≠	 ideal gas but transition still related to BEC!?

T0

� = 0.145 g cm�3 T0 = 3.14 K
T0 = 2.2 K

Tilley & Tilley 
Superfluidity & Superconductivity
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BEC in traps
• Laser cooling & magneto-optical 

trapping techniques 
• Evaporative cooling 
• Atomic gases are metastable 
• Why? 
• Temperatures 
• Densities 
• Scales 10s to 100s of 
• Magnetic traps for alkali atoms 

look like harmonic oscillators 
with different oscillator lengths

500 nK to 2µK
few �1014atoms/cm3
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Oscillators
• Eigenvalues 
• Ground state: all atoms in state with 
• Wave function 
• with 
•     bosons in this sp state 
• Calculate density                             grows with  
• shape does not and is determined by trap potential: 
• Actual scale 
• Finite temperature: atoms occupy excited states 
• For                         use classical Boltzmann distribution 
• spherical                                        (Landau&Lifshitz) 
• If                             width  
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BEC observation
• BEC observed in the form of sharp peak in the center 
• Wave function in momentum space also Gaussian: width 
• So both in coordinate space and momentum space  
• Infinite system all particles zero momentum but no signature in 

coordinate space 
• Observe velocity distribution/ density distribution 

                                                                    Anderson et al.                      

                                                                                           Science 269, 198 (1995) 

                                                                                           Rubidium atoms (velocity) 

                                                                                           left: just above condensation 

                                                                                           middle: just after 

                                                                                      right: further cooled 

                                                                                      asymmetric trap

� a�1
HO
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Trapped bosons at finite temperature
• Interaction between bosons important for the actual shapes 
• Still useful considerations for noninteracting bosons 
• Number of particles 
!

• Energy 
!

• Usual thermodynamic limit not possible  
• Still separate lowest state from the sum with 
• As for infinite system: can be of order        when 
• with 
• This limit is reached for a critical temperature  
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Convert to integrals
• Rewrite particle number 
!

• do numerically or for 
!

• semiclassical description: excitation energies     level spacing  
• valid for large      and 
• Integrate: 
• Imposing                  at                   
• yields 
• or  

• Evaluate energy similarly etc.  
• Interaction important as are finite size corrections
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Gross-Pitaevskii (GP) equation
• Dilute system: average interparticle spacing            large 

compared to magnitude of scattering length, or 
• Previous discussion suggests that HB mean-field can be applied in 

dilute case: replace V (even if strong) with the pseudo potential 
• HB potential then becomes 
• HB equation 
• Looks like nonlinear Schrödinger equation and is referred to as 

the time-independent Gross-Pitaevskii equation 
• Condensate orbital also minimizes (with                     ) 
!

• Time-dependent GP equation 
!

• GP and GP(t) all that is needed to explain most data BEC
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Confined bosons in harmonic traps
• Confining potential well approximated by HO 
!

• usually with cylindrical symmetry (cigar or pancake) 
• Include interaction at the GP level 
• Effect can be large even when the system is dilute  
• Estimate: assume condensate wave function approximately HO 

ground state               (see Ch. 5) 
• Central density of condensate 
• Typical values: 103<N<106, |a|~10-9m, aHO~10-6m so 
• So very dilute 
• Consider mean-field potential
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BEC in traps at the GP level
• Compare with HO energy scale 
• Ratio proportional to 
• Measure of strength of interaction effects 
• For quoted values 
• So expect large deviations of GP w.r.t. noninteracting profile 
• Example u~125 
!

• Column density 
• 8x104 23Na atoms 
• Trap 
• Reduction of 12 w.r.t. HO only
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