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More examples
• Consider

• Determine

• Therefore

Change of basis

Can be done for any state in Fock space ⇒
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Two-body operators in Fock space
• Similar strategy
• N-particles

• Consider

• Matrix elements do not depend on the selected pair

•                    identical for any pair as long as quantum numbers are 
the same, so
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More on two-body operators
• Note:       symmetric and therefore commutes with 

antisymmetrizer
• As a consequence

• Fock-space operator (proof in Phys 540)

• accomplishes the same result for any particle number!

• Note ordering
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Hamiltonian
• Most common operator

• Notation often used

• Use 

• and

• In this basis

• “second quantization”
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IPM for fermions in finite systems
• IPM = independent particle model
• Only consider Pauli principle

• Localized fermions
• Examples

• Hamiltonian many-body problem:
• with

• and
• Suitably chosen auxiliary one-body potential

• Many-body problem can be solved for         !!
• Also works with fixed external potential 

Ĥ = T̂ + V̂ = Ĥ0 + Ĥ1

Ĥ = T̂ + Ûext + V̂ = Ĥ0 + Ĥ1

Ĥ0 = T̂ + Û

Ĥ1 = V̂ � Û

U

Ĥ0

Uext
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Use second quantization
• Solve

• Consider in the          basis (discrete sums for simplicity)

• All many-body eigenstates of       are of the form

• with eigenvalue
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Explicitly
• Employ

• and therefore

• Corresponding many-body problem solved!
• Ground state

• Fermi sea ⇒ 
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†
�1

a†�2
...a†�N

|0�

= [Ĥ0, a
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Electrons in atoms
• Atomic units (a.u.) are standard usage

– electron mass               unit of mass

– elementary charge           unit of charge

– length and time such that numerical values of       and          are unity

– then atomic unit of length Bohr radius

– and time

– where                                                         is the fine structure constant

– energy unit = Hartree      

me

e
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Hamiltonian in a.u.
• Most of atomic physics can be understood on the basis of

• for most applications

• Relativistic description required for heavier atoms
– binding sizable fraction of electron rest mass

– binding of lowest s state generates high-momentum components

• Sensible calculations up to Kr without

• Shell structure well established 
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Ionization energy
• Noble gases

• What does it mean?
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Shell structure
• Simulate with

• with

• even without auxiliary potential  ⇒ shells
– hydrogen-like:                                       degeneracy

– but                                  does not give correct shell structure (2,10,28...

– degeneracy must be lifted

– how?
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Other electrons
• Consider effect of electrons in closed shells for neutral Na
• large distances: nuclear charge screened to 1

• close to the nucleus: electron “sees” all 11 protons
• approximately:

• lifts H-like degeneracy:

• “Far away” orbits: still hydrogen-like!
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Ground state Na
• Fill the lowest shells

• Use schematic potential

• Ground state

• Excited states?
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Closed-shell atoms
• Neon

• Ground state

• Excited states

• Note the H-like states

• Splitting?

• Basic shell structure of atoms understood ⇒ IPM
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Hartree-Fock

• Find Schrödinger-like equation for single-particle states that 
takes into account the interaction between the particles

• Replace auxiliary potential by potential calculated from 
interaction

• Physics: each particle moves in potential well generated by its 
interaction with all the other particles in the system

• In turn: these particles must move in the same potential well --> 
democratic --> self-consistent problem

• Several derivations:
– Variational: Slater determinant that minimizes the energy

– Propagator equation that includes lowest-order effect in interaction

– Here: heuristic
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Development
• Consider following expectation values in a general basis
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Development
• Consider 1 particle explicitly with the other in their HF orbits

• Same procedure

• Interpret as average interaction energy

• Solve one-body problem with

• What is the problem with this?
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Further development
• Requires self-consistency procedure
• Start with guess (problem set for bound states) -->

• Solve

• Then

• Again

• and so on until self-consistent!

• Solution in coordinate space...
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Ingredients
• Interaction term

• Interaction

• Direct term

• Exchange

• Nonlocal potential
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More and including external field
• Notation for HF wave function
• Remember

• becomes

• with

• Exchange term of interaction --> Fock term
• Direct term: Hartree
• Only Hartree --> Pauli principle correction

�rms|�k⇥ = ⇥k(r,ms)
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Nucleon correlations

Douglas Hartree
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Wave functions
• Ne wave functions (solid lines)
• compared with hydrogenic wave functions (dashed lines)
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Comparison with experimental data
• L=S=0 closed-shell atoms (a.u. energy: Hartree = 27.2113845 eV)
• Be and Mg not pure

closed shells
• Need much better

results to do 
chemistry! (mH)

Removal energies Total energy
HF Exp. HF Exp.

He 1s -0.918 -0.9040 -2.862 -2.904
Be 1s -4.733 -4.100 -14.573 -14.667

2s -0.309 -0.343
Ne 1s -32.77 -31.70 -128.547 -128.928

2s -1.930 -1.782
2p -0.850 -0.793

Mg 1s -49.03 -47.91 -199.615 -200.043
2s -3.768 -3.26
2p -2.283 -1.81
3s -0.253 -0.2811

Ar 1s -118.6 -117.87 -526.818 -527.549
2s -12.32 -12.00
2p -9.571 -9.160
3s -1.277 -1.075
3p -0.591 -0.579


