More examples

- Consider $\hat{N}=\sum_{\alpha} a_{\alpha}^{\dagger} a_{\alpha}$
- Determine $\left[\hat{N}, a_{\alpha_{i}}^{\dagger}\right]=\sum_{\alpha}\left[a_{\alpha}^{\dagger} a_{\alpha}, a_{\alpha_{i}}^{\dagger}\right]$

$$
=a_{\alpha_{i}}^{\dagger}
$$

- Therefore $\hat{N}\left|\alpha_{1} \ldots \alpha_{N}\right\rangle=N\left|\alpha_{1} \ldots \alpha_{N}\right\rangle$

Change of basis $a_{\alpha}^{\dagger}|0\rangle=|\alpha\rangle=\sum_{\lambda}|\lambda\rangle\langle\lambda \mid \alpha\rangle=\sum_{\lambda} a_{\lambda}^{\dagger}|0\rangle\langle\lambda \mid \alpha\rangle$
Can be done for any state in Fock space $\Rightarrow a_{\alpha}^{\dagger}=\sum_{\lambda}\langle\lambda \mid \alpha\rangle a_{\lambda}^{\dagger}$
Also $\quad a_{\alpha}=\sum_{\lambda}\langle\alpha \mid \lambda\rangle a_{\lambda}$

Two-body operators in Fock space

- Similar strategy

$$
\left.V=\sum_{\alpha \beta} \sum_{\gamma \delta} \mid \alpha \beta\right)(\alpha \beta|V| \gamma \delta)(\gamma \delta \mid
$$

- N-particles

$$
\begin{aligned}
& V_{N}=\left\{\begin{array}{ccccc}
V(1,2)+ & V(1,3)+ & V(1,4)+ & \ldots+ & V(1, N)+ \\
& V(2,3)+ & V(2,4)+ & \ldots+ & V(2, N)+ \\
& & V(3,4)+ & \ldots+ & V(3, N)+ \\
& & & \ddots & \vdots \\
& & & & V(N-1, N)
\end{array}\right. \\
& =\sum_{i<j}^{N} V(i, j)=\frac{1}{2} \sum_{i \neq j}^{N} V(i, j)
\end{aligned}
$$

- Consider

$$
\left.\left.V(i, j) \mid \alpha_{1} . . \alpha_{i} . . \alpha_{j} . . \alpha_{N}\right)=\sum_{\beta_{i} \beta_{j}}\left(\beta_{i} \beta_{j}|V| \alpha_{i} \alpha_{j}\right) \mid \alpha_{1} . . \alpha_{i-1} \beta_{i} \alpha_{i+1} . . \alpha_{j-1} \beta_{j} \alpha_{j+1} . . \alpha_{N}\right)
$$

- Matrix elements do not depend on the selected pair
- $\left(\beta_{i} \beta_{j}|V| \alpha_{i} \alpha_{j}\right)$ identical for any pair as long as quantum numbers are the same, so

$$
\left.\left.V_{N} \mid \alpha_{1} \alpha_{2} \alpha_{3} \ldots \alpha_{N}\right)=\sum_{i<j}^{N} \sum_{\beta_{i} \beta_{j}}\left(\beta_{i} \beta_{j}|V| \alpha_{i} \alpha_{j}\right) \mid \alpha_{1} \ldots \beta_{i} \ldots \beta_{j} \ldots \alpha_{N}\right)
$$

More on two-body operators

- Note: V_{N} symmetric and therefore commutes with antisymmetrizer
- As a consequence

$$
V_{N}\left|\alpha_{1} \alpha_{2} \alpha_{3} \ldots \alpha_{N}\right\rangle=\sum_{i<j}^{N} \sum_{\beta_{i} \beta_{j}}\left(\beta_{i} \beta_{j}|V| \alpha_{i} \alpha_{j}\right)\left|\alpha_{1} \ldots \beta_{i} \ldots \beta_{j} \ldots \alpha_{N}\right\rangle
$$

- Fock-space operator (proof in Phys 540)

$$
\hat{V}=\frac{1}{2} \sum_{\alpha \beta \gamma \delta}(\alpha \beta|V| \gamma \delta) a_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\delta} a_{\gamma}
$$

- accomplishes the same result for any particle number!
- Note ordering

Hamiltonian

- Most common operator $\hat{H}=\hat{T}+\hat{V}$

$$
=\sum_{\alpha \beta}\langle\alpha| T|\beta\rangle a_{\alpha}^{\dagger} a_{\beta}+\frac{1}{2} \sum_{\alpha \beta \gamma \delta}(\alpha \beta|V| \gamma \delta) a_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\delta} a_{\gamma}
$$

- Notation often used $\psi_{m_{s}}^{\dagger}(\boldsymbol{r}) \equiv a_{r m_{s}}^{\dagger \beta}$
- Use

$$
\begin{aligned}
\left\langle r m_{s}\right| T\left|\boldsymbol{r}^{\prime} m_{s}^{\prime}\right\rangle & =\left\langle r m_{s}\right| \frac{\boldsymbol{p}^{2}}{2 m}\left|\boldsymbol{r}^{\prime} m_{s}^{\prime}\right\rangle \\
& =\frac{-i \hbar}{2 m} \nabla \cdot\left\langle\boldsymbol{r} m_{s}\right| \boldsymbol{p}\left|\boldsymbol{r}^{\prime} m_{s}^{\prime}\right\rangle \\
& =\frac{-\hbar^{2}}{2 m} \nabla^{2}\left\langle\boldsymbol{r} m_{s} \mid \boldsymbol{r}^{\prime} m_{s}^{\prime}\right\rangle \\
& =\frac{-\hbar^{2}}{2 m} \nabla^{2} \delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right\rangle \delta_{m_{s}, m_{s}^{\prime}}
\end{aligned}
$$

- and

$$
\begin{aligned}
\left(\boldsymbol{r}_{1} m_{s_{1}} \boldsymbol{r}_{2} m_{s_{2}}\left|V\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)\right| \boldsymbol{r}_{3} m_{s_{3}} \boldsymbol{r}_{4} m_{s_{4}}\right) & =\delta\left(\boldsymbol{r}_{1}-\boldsymbol{r}_{3}\right) \delta\left(\boldsymbol{r}_{2}-\boldsymbol{r}_{4}\right) \\
& \times \delta_{m_{s_{1}}, m_{s_{3}}} \delta_{m_{s_{2}}, m_{s_{4}}} V\left(\left|\boldsymbol{r}_{3}-\boldsymbol{r}_{4}\right|\right)
\end{aligned}
$$

- In this basis $\hat{H}=\sum_{m_{s}} \int d^{3} r \psi_{m_{s}}^{\dagger}(r)\left\{\frac{-\hbar^{2}}{2 m} \nabla^{2}\right\} \psi_{m_{s}}(\boldsymbol{r})$

$$
+\frac{1}{2} \sum_{m_{s} m_{s}^{\prime}} \int d^{3} r \int d^{3} r^{\prime} \psi_{m_{s}}^{\dagger}(\boldsymbol{r}) \psi_{m_{s}^{\prime}}^{\dagger}\left(\boldsymbol{r}^{\prime}\right) V\left(\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|\right) \psi_{m_{s}^{\prime}}\left(\boldsymbol{r}^{\prime}\right) \psi_{m_{s}}(\boldsymbol{r})
$$

- "second quantization"

IPM for fermions in finite systems

- IPM = independent particle model
- Only consider Pauli principle
- Localized fermions
- Examples
- Hamiltonian many-body problem: $\hat{H}=\hat{T}+\hat{V}=\hat{H}_{0}+\hat{H}_{1}$
- with

$$
\begin{aligned}
& \hat{H}_{0}=\hat{T}+\hat{U} \\
& \hat{H}_{1}=\hat{V}-\hat{U}
\end{aligned}
$$

- and
- Suitably chosen auxiliary one-body potential U
- Many-body problem can be solved for \hat{H}_{0} !!
- Also works with fixed external potential $U_{\text {ext }}$

$$
\hat{H}=\hat{T}+\hat{U}_{\text {ext }}+\hat{V}=\hat{H}_{0}+\hat{H}_{1}
$$

Use second quantization

- Solve

$$
H_{0}|\lambda\rangle=\varepsilon_{\lambda}|\lambda\rangle
$$

- Consider in the $\{|\lambda\rangle\}$ basis (discrete sums for simplicity)

$$
\begin{aligned}
\hat{H}_{0} & =\sum_{\lambda \lambda^{\prime}}\langle\lambda|(T+U)\left|\lambda^{\prime}\right\rangle a_{\lambda}^{\dagger} a_{\lambda^{\prime}} \\
& =\sum_{\lambda \lambda^{\prime}} \varepsilon_{\lambda^{\prime}} \delta_{\lambda, \lambda^{\prime}} a_{\lambda}^{\dagger} a_{\lambda^{\prime}}=\sum_{\lambda} \varepsilon_{\lambda} a_{\lambda}^{\dagger} a_{\lambda}
\end{aligned}
$$

- All many-body eigenstates of \hat{H}_{0} are of the form

$$
\left|\Phi_{n}^{N}\right\rangle=\left|\lambda_{1} \lambda_{2} \ldots \lambda_{N}\right\rangle=a_{\lambda_{1}}^{\dagger} a_{\lambda_{2}}^{\dagger} \ldots a_{\lambda_{N}}^{\dagger}|0\rangle
$$

- with eigenvalue

$$
E_{n}^{N}=\sum_{i=1}^{N} \varepsilon_{\lambda_{i}}
$$

Explicitly

- Employ

$$
\left[\hat{H}_{0}, a_{\lambda_{i}}^{\dagger}\right]=\varepsilon_{\lambda_{i}} a_{\lambda_{i}}^{\dagger}
$$

- and therefore

$$
\begin{aligned}
& \hat{H}_{0}\left|\lambda_{1} \lambda_{2} \lambda_{3} \ldots \lambda_{N}\right\rangle=\hat{H}_{0} a_{\lambda_{1}}^{\dagger} a_{\lambda_{2}}^{\dagger} \ldots a_{\lambda_{N}}^{\dagger}|0\rangle \\
& \quad=\left[\hat{H}_{0}, a_{\lambda_{1}}^{\dagger}\right] a_{\lambda_{2}}^{\dagger} \ldots a_{\lambda_{N}}^{\dagger}|0\rangle+a_{\lambda_{1}}^{\dagger} \hat{H}_{0} a_{\lambda_{2}}^{\dagger} \ldots a_{\lambda_{N}}^{\dagger}|0\rangle \\
& \quad=\left[\hat{H}_{0}, a_{\lambda_{1}}^{\dagger}\right] a_{\lambda_{2}}^{\dagger} \ldots a_{\lambda_{N}}^{\dagger}|0\rangle+a_{\lambda_{1}}^{\dagger}\left[\hat{H}_{0}, a_{\lambda_{2}}^{\dagger}\right] \ldots a_{\lambda_{N}}^{\dagger}|0\rangle+\ldots+a_{\lambda_{1}}^{\dagger} a_{\lambda_{2}}^{\dagger} \ldots\left[\hat{H}_{0}, a_{\lambda_{N}}^{\dagger}\right]|0\rangle \\
& \quad=\left\{\sum_{i=1}^{N} \varepsilon_{\lambda_{i}}\right\}\left|\lambda_{1} \lambda_{2} \lambda_{3} \ldots \lambda_{N}\right\rangle
\end{aligned}
$$

- Corresponding many-body problem solved!
- Ground state $\left|\Phi_{0}^{N}\right\rangle=\prod_{\lambda_{i} \leq F} a_{\lambda_{i}}^{\dagger}|0\rangle$
- Fermi sea $\Rightarrow F$

Electrons in atoms

- Atomic units (a.u.) are standard usage
- electron mass m_{e} unit of mass
- elementary charge e unit of charge
- length and time such that numerical values of \hbar and $4 \pi \epsilon_{0}$ are unity
- then atomic unit of length Bohr radius

$$
\text { a.u. (length) }=a_{0}=\frac{4 \pi \epsilon_{0} \hbar^{2}}{e^{2} m_{e}} \approx 5.29177 \times 10^{-11} \mathrm{~m}
$$

- and time a.u. (time) $=\frac{a_{0}}{\alpha c} \approx 2.41888 \times 10^{-17} \mathrm{~s}$
- where

$$
\alpha=\frac{e^{2}}{4 \pi \epsilon_{0} \hbar c} \approx \frac{1}{137.036}
$$

is the fine structure constant

- energy unit = Hartree $\quad E_{H}=\frac{\hbar^{2}}{m_{e} a_{0}^{2}} \approx 27.2114 \mathrm{eV}$

Hamiltonian in a.u.

- Most of atomic physics can be understood on the basis of

$$
H_{N}=\sum_{i=1}^{N} \frac{\boldsymbol{p}_{i}^{2}}{2}-\sum_{i=1}^{N} \frac{Z}{\left|\boldsymbol{r}_{i}\right|}+\frac{1}{2} \sum_{i \neq j}^{N} \frac{1}{\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|}+V_{m a g}
$$

- for most applications $V_{m a g} \Rightarrow V_{s o}^{e f f}=\sum_{i} \zeta_{i} \ell_{i} \cdot s_{i}$
- Relativistic description required for heavier atoms
- binding sizable fraction of electron rest mass
- binding of lowest s state generates high-momentum components
- Sensible calculations up to Kr without $V_{\text {mag }}$
- Shell structure well established

Ionization energy

- Noble gases
-What does it mean?

Shell structure

- Simulate with

$$
H_{0}^{N}=\sum_{i=1}^{N} H_{0}(i)
$$

- with

$$
H_{0}(i)=\frac{\boldsymbol{p}_{i}^{2}}{2}-\frac{Z}{r_{i}}+U\left(\boldsymbol{r}_{i}\right)
$$

- even without auxiliary potential \Rightarrow shells
- hydrogen-like: $(2 \ell+1) *(2 s+1)$ degeneracy
- but $\quad \varepsilon_{n}=-\frac{Z^{2}}{2 n^{2}} \quad$ does not give correct shell structure (2,10,28...
- degeneracy must be lifted
- how?

Other electrons

- Consider effect of electrons in closed shells for neutral Na
- large distances: nuclear charge screened to 1
- close to the nucleus: electron "sees" all 11 protons
- approximately:

- lifts H-like degeneracy:

$$
\varepsilon_{2 s}<\varepsilon_{2 p}
$$

$$
\varepsilon_{3 s}<\varepsilon_{3 p}<\varepsilon_{3 d}
$$

- "Far away" orbits: still hydrogen-like!

Ground state Na

- Fill the lowest shells
- Use schematic potential $H_{0}\left|n \ell m_{\ell} m_{s}\right\rangle=\varepsilon_{n \ell}\left|n \ell m_{\ell} m_{s}\right\rangle$
- Ground state

$$
\begin{array}{r}
\left|300 m_{s}, 211 \frac{1}{2}, 211-\frac{1}{2}, \ldots, 100 \frac{1}{2}, 100-\frac{1}{2}\right\rangle= \\
a_{300 m_{s}}^{\dagger} a_{211 \frac{1}{2}}^{\dagger} a_{211-\frac{1}{2}}^{\dagger} \ldots a_{100 \frac{1}{2}}^{\dagger} a_{100-\frac{1}{2}}^{\dagger}|0\rangle
\end{array}
$$

- Excited states?

Closed-shell atoms

- Neon
- Ground state
$\left|\Phi_{0}\right\rangle=a_{211 \frac{1}{2}}^{\dagger} a_{211-\frac{1}{2}}^{\dagger} \ldots a_{100 \frac{1}{2}}^{\dagger} a_{100-\frac{1}{2}}^{\dagger}|0\rangle$
- Excited states

$$
\left|n \ell(2 p)^{-1}\right\rangle=a_{n \ell}^{\dagger} a_{2 p}\left|\Phi_{0}\right\rangle
$$

- Note the H-like states
- Splitting?

- Basic shell structure of atoms understood \Rightarrow IPM

Hartree-Fock

- Find Schrödinger-like equation for single-particle states that takes into account the interaction between the particles
- Replace auxiliary potential by potential calculated from interaction
- Physics: each particle moves in potential well generated by its interaction with all the other particles in the system
- In turn: these particles must move in the same potential well --> democratic --> self-consistent problem
- Several derivations:
- Variational: Slater determinant that minimizes the energy
- Propagator equation that includes lowest-order effect in interaction
- Here: heuristic

Development

- Consider following expectation values in a general basis

$$
\begin{aligned}
\left\langle\alpha_{1} \ldots \alpha_{N}\right| \hat{T}\left|\alpha_{1} \ldots \alpha_{N}\right\rangle & =\sum_{\alpha \beta}\langle\alpha| T|\beta\rangle\left\langle\alpha_{1} \ldots \alpha_{N}\right| a_{\alpha}^{\dagger} a_{\beta}\left|\alpha_{1} \ldots \alpha_{N}\right\rangle \\
& =\sum_{\alpha, \beta \in\left\{\alpha_{i}\right\}}\langle\alpha| T|\beta\rangle\left\langle\alpha_{1} \ldots \alpha_{N}\right|\left(\delta_{\alpha \beta}-a_{\beta} a_{\alpha}^{\dagger}\right)\left|\alpha_{1} \ldots \alpha_{N}\right\rangle \\
& =\sum_{i=1}^{N}\left\langle\alpha_{i}\right| T\left|\alpha_{i}\right\rangle \\
\left\langle\alpha_{1} \ldots \alpha_{N}\right| \hat{V}\left|\alpha_{1} \ldots \alpha_{N}\right\rangle & =\frac{1}{2} \sum_{\alpha \beta \gamma \delta}(\alpha \beta|V| \gamma \delta)\left\langle\alpha_{1} \ldots \alpha_{N}\right| a_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\delta} a_{\gamma}\left|\alpha_{1} \ldots \alpha_{N}\right\rangle \\
& =\frac{1}{2} \sum_{\alpha \beta \gamma \delta \in\left\{\alpha_{i}\right\}}(\alpha \beta|V| \gamma \delta)\left\langle\alpha_{1} \ldots \alpha_{N}\right|\left(\delta_{\alpha \gamma} \delta_{\beta \delta}-\delta_{\alpha \delta} \delta_{\beta \gamma}\right)\left|\alpha_{1} \ldots \alpha_{N}\right\rangle \\
& =\frac{1}{2} \sum_{\alpha \beta \in\left\{\alpha_{i}\right\}}[(\alpha \beta|V| \alpha \beta)-(\alpha \beta|V| \beta \alpha)]
\end{aligned}
$$

Development

- Consider 1 particle explicitly with the other in their HF orbits

$$
\begin{aligned}
\left\langle\mu \alpha_{2} \ldots \alpha_{N}\right| \hat{T}\left|\nu \alpha_{2} \ldots \alpha_{N}\right\rangle & =\sum_{\alpha \beta}\langle\alpha| T|\beta\rangle\left\langle\mu \alpha_{2} \ldots \alpha_{N}\right| a_{\alpha}^{\dagger} a_{\beta}\left|\nu \alpha_{2} \ldots \alpha_{N}\right\rangle \\
& =\sum_{\alpha \in\left\{\alpha_{i} \mu\right\} \beta \in\left\{\alpha_{i} \nu\right\}}\langle\alpha| T|\beta\rangle\left\langle\alpha_{2} \ldots \alpha_{N}\right| a_{\mu} a_{\alpha}^{\dagger} a_{\beta} a_{\nu}^{\dagger}\left|\alpha_{2} \ldots \alpha_{N}\right\rangle \\
& =\sum_{\alpha \in\left\{\alpha_{i} \mu\right\} \beta \in\left\{\alpha_{i} \nu\right\}}\langle\alpha| T|\beta\rangle\left\langle\alpha_{2} \ldots \alpha_{N}\right|\left(\delta_{\alpha \mu}-a_{\alpha}^{\dagger} a_{\mu}\right)\left(\delta_{\beta \nu}-a_{\nu}^{\dagger} a_{\beta}\right)\left|\alpha_{2} \ldots \alpha_{N}\right\rangle \\
& =\langle\mu| T|\nu\rangle+\delta_{\mu \nu}\left\langle\alpha_{2} \ldots \alpha_{N}\right| \hat{T}\left|\alpha_{2} \ldots \alpha_{N}\right\rangle
\end{aligned}
$$

- Same procedure

$$
\left\langle\mu \alpha_{2} \ldots \alpha_{N}\right| \hat{V}\left|\nu \alpha_{2} \ldots \alpha_{N}\right\rangle=\sum_{\alpha \in\left\{\alpha_{i}\right\}}[(\mu \alpha|V| \nu \alpha)-(\mu \alpha|V| \alpha \nu)]+\delta_{\mu \nu}\left\langle\alpha_{2} \ldots \alpha_{N}\right| \hat{V}\left|\alpha_{2} \ldots \alpha_{N}\right\rangle
$$

- Interpret as average interaction energy

$$
\langle\mu| U_{H F}|\nu\rangle=\sum_{\alpha \in\left\{\alpha_{i}\right\}}[(\mu \alpha|V| \nu \alpha)-(\mu \alpha|V| \alpha \nu)] \equiv \sum_{\alpha \in \alpha_{i}}\langle\mu \alpha| V|\nu \alpha\rangle
$$

- Solve one-body problem with

$$
\left(T+U_{H F}\right)\left|\alpha_{i}\right\rangle=\varepsilon_{i}\left|\alpha_{i}\right\rangle
$$

- What is the problem with this?

Further development

- Requires self-consistency procedure
- Start with guess (problem set for bound states) --> $\left\{\left|\alpha_{i}^{(0)}\right\rangle\right\}$
- Solve

$$
\left\langle\alpha_{i}^{(0)}\right| U_{H F}^{(0)}\left|\alpha_{j}^{(0)}\right\rangle=\sum_{k}\left\langle\alpha_{i}^{(0)} \alpha_{k}^{(0)}\right| V\left|\alpha_{j}^{(0)} \alpha_{k}^{(0)}\right\rangle
$$

$$
\left(T+U_{H F}^{(0)}\right)\left|\alpha_{m}^{(1)}\right\rangle=\quad \quad \varepsilon_{m}^{(1)}\left|\alpha_{m}^{(1)}\right\rangle
$$

$$
\sum_{j}\left\{\left\langle\alpha_{i}^{(0)}\right| T+U_{H F}^{(0)}\left|\alpha_{j}^{(0)}\right\rangle\right\}\left\langle\alpha_{j}^{(0)} \mid \alpha_{m}^{(1)}\right\rangle=\quad \varepsilon_{m}^{(1)}\left\langle\alpha_{i}^{(0)} \mid \alpha_{m}^{(1)}\right\rangle
$$

- Then

$$
\left\langle\alpha_{i}^{(1)}\right| U_{H F}^{(1)}\left|\alpha_{j}^{(1)}\right\rangle=\sum_{k}\left\langle\alpha_{i}^{(1)} \alpha_{k}^{(1)}\right| V\left|\alpha_{j}^{(1)} \alpha_{k}^{(1)}\right\rangle
$$

- Again

$$
\left(T+U_{H F}^{(1)}\right)\left|\alpha_{m}^{(2)}\right\rangle=\quad \varepsilon_{m}^{(2)}\left|\alpha_{m}^{(2)}\right\rangle
$$

$$
\sum_{j}\left\{\left\langle\alpha_{i}^{(1)}\right| T+U_{H F}^{(1)}\left|\alpha_{j}^{(1)}\right\rangle\right\}\left\langle\alpha_{j}^{(1)} \mid \alpha_{m}^{(2)}\right\rangle=\quad \varepsilon_{m}^{(2)}\left\langle\alpha_{i}^{(1)} \mid \alpha_{m}^{(2)}\right\rangle
$$

- and so on until self-consistent!
- Solution in coordinate space...

Ingredients

- Interaction term

$$
\begin{aligned}
\left\langle\boldsymbol{r} m_{s}\right| U_{H F}\left|\boldsymbol{r}^{\prime} m_{s}^{\prime}\right\rangle & =\sum_{k}\left\langle\boldsymbol{r} m_{s} \alpha_{k}\right| V\left|\boldsymbol{r}^{\prime} m_{s}^{\prime} \alpha_{k}\right\rangle \\
& =\sum_{k} \int d^{3} r_{1} \int d^{3} r_{2} \sum_{m_{1} m_{2}}\left\langle\alpha_{k} \mid \boldsymbol{r}_{1} m_{1}\right\rangle\left\langle\boldsymbol{r} m_{s} \boldsymbol{r}_{1} m_{1}\right| V\left|\boldsymbol{r}^{\prime} m_{s}^{\prime} \boldsymbol{r}_{2} m_{2}\right\rangle\left\langle\boldsymbol{r}_{2} m_{2} \mid \alpha_{k}\right\rangle
\end{aligned}
$$

- Interaction

$$
\begin{aligned}
& \quad\left(\boldsymbol{r}_{1} m_{s_{1}}, \boldsymbol{r}_{2} m_{s_{2}}|V| \boldsymbol{r}_{3} m_{s_{3}}, \boldsymbol{r}_{4} m_{s_{4}}\right)= \\
& \quad \delta_{m_{s 1}, m_{s 3}} \delta_{m_{s 2}, m_{s 4}} \delta\left(\boldsymbol{r}_{1}-\boldsymbol{r}_{3}\right) \delta\left(\boldsymbol{r}_{2}-\boldsymbol{r}_{4}\right) V\left(\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right)
\end{aligned}
$$

- Direct term $\left\langle\boldsymbol{r} m_{s}\right| U_{H F}^{D}\left|\boldsymbol{r}^{\prime} m_{s}^{\prime}\right\rangle=\delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \delta_{m_{s} m_{s}^{\prime}} \sum_{k} \int d^{3} r_{1} \sum_{m_{1}} V\left(\boldsymbol{r}-\boldsymbol{r}_{1}\right)\left|\left\langle\boldsymbol{r}_{1} m_{1} \mid \alpha_{k}\right\rangle\right|^{2}$
- Exchange $\left\langle\boldsymbol{r} m_{s}\right| U_{H F}^{E}\left|\boldsymbol{r}^{\prime} m_{s}^{\prime}\right\rangle=-\sum_{k}\left(r m_{s} \alpha_{k}|V| \alpha_{k} \boldsymbol{r}^{\prime} m_{s}^{\prime}\right)$

$$
\begin{aligned}
& =-\sum_{k} \int d^{3} r_{1} \int d^{3} r_{2} \sum_{m_{1} m_{2}}\left\langle\alpha_{k} \mid \boldsymbol{r}_{1} m_{1}\right\rangle\left(\boldsymbol{r} m_{s} \boldsymbol{r}_{1} m_{1}|V| \boldsymbol{r}_{2} m_{2} \boldsymbol{r}^{\prime} m_{s}^{\prime}\right)\left\langle\boldsymbol{r}_{2} m_{2} \mid \alpha_{k}\right\rangle \\
& =-\sum_{k}\left\langle\alpha_{k} \mid \boldsymbol{r}^{\prime} m_{s}^{\prime}\right\rangle V\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)\left\langle\boldsymbol{r} m_{s} \mid \alpha_{k}\right\rangle
\end{aligned}
$$

- Nonlocal potential

More and including external field

- Notation for HF wave function $\left\langle\boldsymbol{r} m_{s} \mid \alpha_{k}\right\rangle=\phi_{k}\left(\boldsymbol{r}, m_{s}\right)$
- Remember

$$
\left(T+U_{e x t}+U_{H F}\right)\left|\alpha_{k}\right\rangle=\varepsilon_{k}\left|\alpha_{k}\right\rangle
$$

- becomes

$$
\begin{aligned}
& \varepsilon_{k} \phi_{k}\left(\boldsymbol{r}, m_{s}\right)=-\frac{\hbar^{2}}{2 m} \nabla^{2} \phi_{k}\left(\boldsymbol{r}, m_{s}\right)+U_{e x t}(\boldsymbol{r}) \phi_{k}\left(\boldsymbol{r}, m_{s}\right) \\
& \quad+\left[\int d \boldsymbol{r}^{\prime} V\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \sum_{m_{s}^{\prime}} n^{H F}\left(\boldsymbol{r}^{\prime} m_{s}^{\prime}, \boldsymbol{r}^{\prime} m_{s}^{\prime}\right)\right] \phi_{k}\left(\boldsymbol{r}, m_{s}\right) \\
& \quad-\sum_{m_{s}^{\prime}} \int d \boldsymbol{r}^{\prime} V\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) n^{H F}\left(\boldsymbol{r}^{\prime} m_{s}^{\prime}, \boldsymbol{r} m_{s}\right) \phi_{k}\left(\boldsymbol{r}^{\prime}, m_{s}^{\prime}\right)
\end{aligned}
$$

- with

$$
n^{H F}\left(\boldsymbol{r}^{\prime} m_{s}^{\prime}, \boldsymbol{r} m_{s}\right)=\sum_{n=1}^{N} \phi_{n}\left(\boldsymbol{r}, m_{s}\right) \phi_{n}^{*}\left(\boldsymbol{r}^{\prime}, m_{s}^{\prime}\right)
$$

- Exchange term of interaction --> Fock term
- Direct term: Hartree
- Only Hartree --> Pauli principle correction

Douglas Hartree

Wave functions

- Ne wave functions (solid lines)
- compared with hydrogenic wave functions (dashed lines)

Comparison with experimental data

- $L=S=0$ closed-shell atoms (a.u. energy: Hartree $=27.2113845 \mathrm{eV}$)
- Be and Mg not pure closed shells
- Need much better results to do chemistry! (mH)

		Removal energies		Total energy	
		HF	Exp.	HF	Exp.
He	$1 s$	-0.918	-0.9040	-2.862	-2.904
Be	$1 s$	-4.733	-4.100	-14.573	-14.667
	$2 s$	-0.309	-0.343		
Ne	$1 s$	-32.77	-31.70	-128.547	-128.928
	$2 s$	-1.930	-1.782		
	$2 p$	-0.850	-0.793		
Mg	$1 s$	-49.03	-47.91	-199.615	-200.043
	$2 s$	-3.768	-3.26		
	$2 p$	-2.283	-1.81		
	$3 s$	-0.253	-0.2811		
Ar	$1 s$	-118.6	-117.87	-526.818	-527.549
	$2 s$	-12.32	-12.00		
	$2 p$	-9.571	-9.160		
	$3 s$	-1.277	-1.075		
	$3 p$	-0.591	-0.579		

