Closed-shell atoms

- External potential is spherically symmetric \& $[\hat{H}, \hat{\boldsymbol{L}}]=0$
- "Restricted" HF with no dependence on spin and orbital angular momentum quantum numbers works well for $\mathrm{L}=\mathrm{S}=0$ ground states of closed-shell atoms with degeneracies involving $2(2 \ell+1)$
- Wave function ansatz spherical $\phi_{i}(\boldsymbol{r})=\varphi_{n \ell}(r) Y_{\ell m_{\ell}}(\hat{\boldsymbol{r}})$
- Multiplying $\varepsilon_{i} \phi_{i}(\boldsymbol{r})=-\frac{\hbar^{2}}{2 m} \nabla^{2} \phi_{i}(\boldsymbol{r})+v_{H}(\boldsymbol{r}) \phi_{i}(\boldsymbol{r})+U_{e x t}(\boldsymbol{r}) \phi_{i}(\boldsymbol{r}) \quad$ with $Y_{\ell m_{\ell}}^{*}(\hat{r})$

$$
-\frac{1}{2} \int d \boldsymbol{r}^{\prime} V\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) n_{H F}\left(\boldsymbol{r}^{\prime}, \boldsymbol{r}\right) \phi_{n}\left(\boldsymbol{r}^{\prime}\right)
$$

- and integrating over \hat{r} yields equations for radial wave functions

$$
\begin{aligned}
\varepsilon_{n \ell} \varphi_{n \ell}(r)= & \int d \hat{\boldsymbol{r}} Y_{\ell m_{\ell}}^{*}(\hat{\boldsymbol{r}})\left\{\left[-\frac{1}{2} \nabla^{2}-\frac{Z}{r}+v_{H}(\boldsymbol{r})\right] \varphi_{n \ell}(r) Y_{\ell m_{\ell}}(\hat{\boldsymbol{r}})\right. \\
& \left.-\frac{1}{2} \int d \boldsymbol{r}^{\prime} \frac{n_{H F}\left(\boldsymbol{r}^{\prime}, \boldsymbol{r}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} \varphi_{n \ell}\left(r^{\prime}\right) Y_{\ell m_{\ell}}\left(\hat{\boldsymbol{r}}^{\prime}\right)\right\}
\end{aligned}
$$

- Coulomb inserted and to be shown that rhs does not depend on m_{ℓ}

Check

- Note $\nabla^{2}\left[\varphi_{n \ell}(r) Y_{\ell m_{\ell}}(\hat{r})\right]=\left(\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} r-\frac{\ell(\ell+1)}{r^{2}}\right) \varphi_{n \ell}(r) Y_{\ell m_{\ell}}(\hat{r})$
- Nuclear term also OK
- Because of full shells $n_{H F}\left(r^{\prime}, r\right)=2 \sum_{n \ell} \varphi_{n \ell}(r) \varphi_{n \ell}\left(r^{\prime}\right) \sum_{m_{\ell}=-\ell}^{\ell} Y_{\ell m_{\ell}}(\hat{r}) Y_{l m_{\ell}}^{*}\left(\hat{r}^{\prime}\right)$

$$
=2 \sum_{n \ell} \varphi_{n \ell}(r) \varphi_{n \ell}\left(r^{\prime}\right) \frac{2 \ell+1}{4 \pi} P_{\ell}(\cos \omega)
$$

- So the electron density is given by

$$
n^{H F}(\boldsymbol{r})=n_{H F}(\boldsymbol{r}, \boldsymbol{r})=\frac{1}{4 \pi} \sum_{n \ell} 2(2 \ell+1) \varphi_{n \ell}^{2}(r)
$$

- and spherically symmetric
- So $v_{H}(\boldsymbol{r})=\int d \boldsymbol{r}^{\prime} \frac{n_{H F}\left(r^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}$ does not depend on m_{ℓ}
- Use $\frac{1}{\left|r-\boldsymbol{r}^{\prime}\right|}=\sum_{L=0}^{\infty} \frac{r_{L}^{L}}{r_{>}^{L+1}} P_{L}(\cos \omega)$ and $\int d \hat{r}^{\prime} P_{L}(\cos \omega)=2 \pi \int_{-1}^{+1} d x P_{L}(x)=4 \pi \delta_{L, 0}$
- So Hartree potential is spherical $v_{H}(r)=4 \pi \int d r^{\prime} r^{\prime 2} \frac{n_{H F}\left(r^{\prime}\right)}{r_{>}}$

Fock term more involved

- Write $\left(\hat{v_{F}} \varphi_{n \ell}\right)(r)=\frac{1}{2} \int d \hat{\boldsymbol{r}} Y_{\ell m_{\ell}}^{*}(\hat{\boldsymbol{r}}) \int d \boldsymbol{r}^{\prime} \frac{n_{H F}\left(\boldsymbol{r}^{\prime}, \boldsymbol{r}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} \varphi_{n \ell}\left(r^{\prime}\right) Y_{\ell m_{\ell}}\left(\hat{\boldsymbol{r}}^{\prime}\right)$

$$
=\frac{1}{2} \int d \hat{\boldsymbol{r}} Y_{\ell m_{\ell}}^{*}(\hat{\boldsymbol{r}}) \int d \boldsymbol{r}^{\prime} 2 \sum_{n^{\prime} \ell^{\prime}} \varphi_{n^{\prime} \ell^{\prime}}(r) \varphi_{n^{\prime} \ell^{\prime}}\left(r^{\prime}\right) \sum_{m_{\ell}^{\prime}=-\ell^{\prime}}^{\ell^{\prime}} Y_{\ell^{\prime} m_{\ell^{\prime}}}(\hat{\boldsymbol{r}}) Y_{\ell^{\prime} m_{\ell^{\prime}}}^{*}\left(\hat{\boldsymbol{r}}^{\prime}\right)
$$

$$
\times \sum_{L=0}^{\infty} \sum_{M_{L}=-L}^{L} \frac{r_{<}^{L}}{r_{>}^{L+1}} \frac{4 \pi}{2 L+1} Y_{L M_{L}}(\hat{\boldsymbol{r}}) Y_{L M_{L}}^{*}\left(\hat{r}^{\prime}\right) \varphi_{n \ell}\left(r^{\prime}\right) Y_{\ell m_{\ell}}\left(\hat{r}^{\prime}\right)
$$

$$
=\sum_{n^{\prime} \ell^{\prime}} \varphi_{n^{\prime} \ell^{\prime}}(r) \sum_{L=0}^{\infty} \int d r^{\prime} r^{\prime 2} \varphi_{n^{\prime} \ell^{\prime}}\left(r^{\prime}\right) \varphi_{n \ell}\left(r^{\prime}\right) \frac{r_{<}^{L}}{r_{>}^{L+1}} C_{\ell \ell^{\prime} L}
$$

- Angular integrations in $C_{\ell \ell^{\prime} L}=\sum_{m_{\ell}^{\prime} M_{L}} \frac{4 \pi}{2 L+1} \int d \hat{\boldsymbol{r}} Y_{\ell m_{\ell}}^{*}(\hat{\boldsymbol{r}}) Y_{L M_{L}}(\hat{\boldsymbol{r}}) Y_{\ell^{\prime} m_{\ell}^{\prime}}(\hat{\boldsymbol{r}})$

$$
\int d \hat{\boldsymbol{r}}^{\prime} Y_{\ell^{\prime} m_{\ell}^{\prime}}^{*}\left(\hat{\boldsymbol{r}}^{\prime}\right) Y_{L M_{L}}^{*}\left(\hat{\boldsymbol{r}}^{\prime}\right) Y_{\ell m_{\ell}}\left(\hat{\boldsymbol{r}}^{\prime}\right)
$$

- Standard result $\int d \hat{\boldsymbol{r}} Y_{\ell m_{\ell}}^{*}(\hat{\boldsymbol{r}}) Y_{L M_{L}}(\hat{\boldsymbol{r}}) Y_{\ell^{\prime} m_{\ell}^{\prime}(\hat{\boldsymbol{r}})}=\frac{\sqrt{(2 \ell+1)\left(2 \ell^{\prime}+1\right)(2 L+1)}}{\sqrt{4 \pi}}$

$$
\times(-1)^{m_{\ell}}\left(\begin{array}{rrr}
\ell & L & \ell^{\prime} \\
-m_{\ell} & M_{L} & m_{\ell}^{\prime}
\end{array}\right)\left(\begin{array}{rrr}
\ell & L & \ell^{\prime} \\
0 & 0 & 0
\end{array}\right)
$$

Further development of Fock term

- 3j-symbols in Appendix B
- Note triangles
- Use normalization $\sum_{m_{\ell}^{\prime} M_{L}}\left(\begin{array}{rrr}\ell & L & \ell^{\prime} \\ -m_{\ell} & M_{L} & m_{\ell}^{\prime}\end{array}\right)^{2}=\frac{1}{2 \ell+1}$
- to obtain

$$
C_{\ell \ell^{\prime} L}=\left(2 \ell^{\prime}+1\right)\left(\begin{array}{ccc}
\ell & L & \ell^{\prime} \\
0 & 0 & 0
\end{array}\right)^{2}
$$

- also independent of m_{ℓ}
- Final result

$$
\varepsilon_{n \ell} \varphi_{n \ell}(r)=\left\{-\frac{1}{2}\left[\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} r-\frac{\ell(\ell+1)}{r^{2}}\right]-\frac{Z}{r}+v_{H}(r)\right\} \varphi_{n \ell}(r)-\left(\hat{v}_{F} \varphi_{n \ell}\right)(r)
$$

- Can be solved in different ways
- One strategy discussed in Ch.10.2.3

Some properties of wave functions

- Near origin the usual behavior $\varphi_{n \ell}(r) \sim r^{\ell}$
- Asymptotic behavior more difficult due to Fock term \& longrange Coulomb interaction
- It can shown that for occupied HF orbitals the asymptotic potential behaves as $\frac{N-Z-1}{r}+w(r)$ with a residual contribution that vanishes faster than $\frac{1}{r}$
- Also, all occupied orbitals decay as $\varphi_{n \ell}(r) \sim \mathrm{e}^{-\kappa r}$
- with $\kappa=\sqrt{2 \varepsilon}$ determined by the last occupied HF sp energy
- For unoccupied orbits asymptotic potential less attractive and doesn't bind unoccupied states for neutral atoms

