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Closed-shell atoms
• External potential is spherically symmetric &
• “Restricted” HF with no dependence on spin and orbital angular 

momentum quantum numbers works well for L=S=0 ground states 
of closed-shell atoms with degeneracies involving

• Wave function ansatz spherical
• Multiplying                                                                    with

• and integrating over     yields equations for radial wave functions

• Coulomb inserted and to be shown that rhs does not depend on
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Check
• Note
• Nuclear term also OK

• Because of full shells

• So the electron density is given by 

• and spherically symmetric
• So                                  does not depend on

• Use                                   and

• So Hartree potential is spherical 
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Fock term more involved
• Write

• Angular integrations in

• Standard result
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Further development of Fock term
• 3j-symbols in Appendix B
• Note triangles

• Use normalization
• to obtain

• also independent of

• Final result

• Can be solved in different ways

• One strategy discussed in Ch.10.2.3

⇤

m�
⇥ML

�
⇤ L ⇤�

�m⇤ ML m�
⇤

⇥2

=
1

2⇤ + 1

C⇥⇥�L = (2⇤� + 1)
�

⇤ L ⇤�

0 0 0

⇥2

m�

�n⇤⇥n⇤(r) =
⇤
�1

2

�
1
r

⇤2

⇤r2
r � ⇧(⇧ + 1)

r2

⇥
� Z

r
+ vH(r)

⌅
⇥n⇤(r)� (v̂F ⇥n⇤)(r)



QMPT 540

Some properties of wave functions
• Near origin the usual behavior
• Asymptotic behavior more difficult due to Fock term & long-

range Coulomb interaction

• It can shown that for occupied HF orbitals the asymptotic 
potential behaves as                         with a residual contribution 
that vanishes faster than

• Also, all occupied orbitals decay as

• with                 determined by the last occupied HF sp energy  
• For unoccupied orbits asymptotic potential less attractive and 

doesn’t bind unoccupied states for neutral atoms
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