Interaction of electrons with photons

Complete Hamiltonian includes interaction of charges and their
coupling to the electromagnetic field

Use radiation gauge
Vector potential in minimal substitution

Hamiltonian for Z electrons in an atom plus radiation field
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Electron and interaction Hamiltonian

Electrons
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Towards transitions between atomic levels

Solve electron Hamiltonian (approximately)
Hartree-Fock method for example
Ground state: occupy lowest HF orbits
Treat atoms in IPM with e.g. in second quantization
Heleetrons = Z Ent a;gmemsanﬁmgms
nlmem;
Free electromagnetic field solved
Transitions between |atom) |[photons) states --> coupling
Usually emission or absorption of one photon

Use second quantization for electrons as well




Second quantized
Using transversality — p; - A(xi,t) = A(x;,t) - ps

Remember
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neglect term with vector potential squared




Next step

Use standard time-dependent perturbation theory for transitions
of the type

A [nka) = |A;Nkga) = |B;nga £ 1)

Do only lowest order (otherwise squared term must be included)

Validity

- present results for "slow" particles

- not good for interaction with modes hw > me? (--> pair creation)

- can be eliminated by cut-off: sum only |k| < k. with Ack. = hw, < mc’

- should still be large with respect to transition frequency of particles so

fiwy < hw, < mc?

- Hydrogen: hwg ~ a’mc® ~ 1H
hw. ~ «amc?
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_ mc” ~ 0.5 MeV 0= — ~




Apply time-dependent perturbation theory
Results from TDPT
Constant potential

- Transition rate from Fermi's Golden Rule

27 .
Wiy f] = fﬂ(Ef) {1V ]3)]?

- No change when Fock space formulation is used

- Except: "potential” now includes e "Wt or e'?

- Soinsteadof Ly =FE; -- Ef=F; + hw for removing a photon
(absorption)

- --> Ef = E; — hw for adding a photon

(emission) )

- Corresponding Golden Rule becomes  w; ,[f] = |<f| int |1)

- With I%nt no longer including time dependence




Emission of a photon
We want to describe transitions of the kind
’A; Nikoy = O> = ]B;nka = 1>
So we need a transition rate of the kind
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Wy = E <B§nka — 1‘ Hint |A7 Nka = O>| Phw,d)

Density of states --> # of allowed states in interval hw + d(hw), iw

for photon emitted into solid angle df2

First evaluate (note dn, = zidkzw )
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Density of states

Required density of states is then obtained from

(# of states < h(w + dw) — (# of states < hw) =

(wHdw)/c
= v / dk k% dQ) — v
0

Therefore prw.d0 = (
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Corresponding rate
Insert density of states
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Only second term contributes
Single-particle matrix elements require evaluation

Also matrix element connecting initial and final atomic state plus
photon involving  ala,al,,




Rate continued

5o right now

Typical transition: optical ~ eV --> hwy, (green --> 2 eV)
Atomic dimension: ~ 107" m

So from  hw, = kr = hir L V10T m ~ 1074

he 1.24 x 10=% eV m

therefore e_'”“/""’ =1—k' =1
Electric dipole (E1) approximation
Photon matrix element (1xalal, . [0) = dxrdra

Consider alkali atom in IPM
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Atom

Alkali atom: one particle outside closed shell
_i_
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|A) = |[nfmems; Do) = a ORY
Transition to final state

|B) = [0/ l'mym’; ®o) = al s |P0)

n’'f'mj,m/,
Evaluate
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not unexpected...

So we also need erx - (n'l'mym.| p|ntmems)




Dipole matrix element
Use central field from
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Matrix element

Then (hence dipole approximation) & note change in parity
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Rate
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Experimental conditions

* Sum also over all projections mf@ of final state
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Explicit example
Hydrogen atom 2p = 1s transition
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Energy levels of the hydrogen atom with some of the
transitions betw een them that give rise to the spectral

linesindicated




General issues related to absorption (emission)
Absorption

Initial state: assume only one type of photons ko = ng,

Atom absorbs 1 photon
- initial state Mka) |A)
- final state Nga — 1) | B)

H;n: contribution with ap, S0 Gkq |nka> = \/Nka |nka — 1>
“Before"” TDPT --»

A e [ 2mhngg 1/2 (o
(B fie 14) = - (2200 ) e S e (8520 p) (Blala, 4
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- Can obtain equivalent classical result by taking classical vector potential
Aabs (w7 t) _ Agbsei(k-m—wkt)
1/2

for Nk large; then do minimal substitution




Absorption rate in dipole approximation
TOPT

2
27 e? 2mhng,
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Y exa- (Blp|Y) (Blaba, |4)
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(EFp — Faq — hwy)

Absorption cross section

Defined --> Energy per unit time absorbed by atom A --> B

energy flux of radiation field
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Example
Take photon momentum along z-axis and polarized light --> x-axis
As beforeuse  p, = % |, Ho
Initial state: ground state of closed shell atom |A) = |®o)
ORY

Final state: excited state |B) =a} .00 Gntmem.,
Simple particle-hole state

Evaluate  (B|ajha, |A) = (®o|a),_an. ala, |Po) = 6. p0n_
So absorption cross section
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Thomas-Reiche-Kuhn sum rule

Simple model of absorption cross section: delta spike at every
allowed combination of ns¢ — n/t

Dipole matrix element: see before

Consider integral over all possible absorption contributions
/dw Oaps(W) = 4m°a Z Wnono |<n>€’m2m;|x|n<€mgm8>|2

n>n<

More general expression
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Evaluate double commutator

Only kinetic contribution of Hamiltonian survives

[XZ7[H7XZ]] - i |:sz7 [Zpijvzxk]]

= 5 2 [0 |
ijk
1
— % [xz (_Zih)pxg(sjkz]
ijk
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4m2e? Zh? e’
= = Z21°c | —
hch  2m e (mc2)

Planck’s constant has disappeared --> classical result (Jackson)




Absorption cross sections in nature
Atoms 35

hw (Ry)

Figurel Total photoabsorption cross section of Xxenon versus photon energy in the vicinity
of the 4d threshold. The solid line 1s the TDDFT calculations of Zangwill & Soven (23) and
the crosses are the experimental results of Haensel et al. (80).
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Figure 2 The photoabsorption cross section of the chromophore of the green fluorescent
protein calculated by Marques et al. (64) compared with the experimental measurements. The
dashed line corresponds to the neutral chromphore, the dotted line to the anionic, whereas
the crosses and solid curves are the experimental results of Nielsen et al. (86) and Creemers
et al. (87), respectively.




and more

- Silicon

Im &(w)

o [eV]

Figure 3 Optical absorption spectrum of silicon. In the figure are represented the
following spectra: experiment (93) (thick dots), RPA (dotted curve), TDDFT using
the ALDA (dot-dashed curve), TDDFT using the RORO kemel (72) (solid curve), and
the results obtamned from the solution of Bethe-Saltpeter equation (dashed curve). Figure
reproduced from Onida et al. (18).




for nuclei

- 197Au nucleus
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Figure 6-18 Total photoabsorption cross section for '*”Au. The experimental data are from
S. C. Fultz, R. L. Bramblett, J. T. Caldwell, and N. A. Kerr, Phys. Rev. 127, 1273 (1962). The
solid curve is of Breit-Wigner shape with the indicated parameters.




and finally

Proton
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Figure 3 The total absorption cross section oy for the proton. The various lines
represent the MAID results (34) for the total cross section (solid line), one-pion channels
(dashed line), more-pion channels (dash-dotted line), and n channel (dotted line). The
data for the total cross section are from MAMI (35) (filled circles) and Daresbury (36)
(open circles). The triangles represent the data for the 2 channels (37).




Photoelectric effect (--> beginning 1905)

Absorb high-energy photon (energy still much less than electron
rest mass)

Must overcome binding of electron

Close to threshold Coulomb cannot be neglected for outgoing
electron

At higher energy approximate final electron by plane wave

Use absorption cross section but replace delta function by
appropriate density of final states

But don't make dipole approximation!
Initial state |A) = [®o)

Final state |B) = a;i,fmsa'n<€mgms

D)

Evaluate density of states for plane wave




Density of states

. |
Wave function (xlkf) = —=e'kr®
VV
| 2T
As usual k,, = 7 e etc.
Energy 1282
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Explicit example

K-shell knockout Ap<e = A1

(B| a%% |A) = (Do aLakfmsaEwy |P0) > Ok pm.p01sy
Then

do 4mrée? oo
o mzwc‘eka‘<kf|€k p|ls)
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3/2
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General issues related to emission

- Emission

Initial state: assume only one type of photons ko = ng,

Atom emits 1 photon
- initial state Mka) |A)
- final state Nga + 1) |B)
! =/ 1 1
so Qp, ‘nka> = VNka T+ ‘nko{ + >

H;,: contribution with a;rw

Induced emission

e (2mh(ng, + 1) 1/2 ik :
( v ) ;ﬁek (Ble™™® ply) (Blajsay|A)

(B| H},,, |A) =

m

- Can obtain equivalent classical result by taking classical vector potential

| 2h(Nka + 1) t/2
Aemzs — o
0 c ( Wik V ) Ck

- for Nk large; then do minimal substitution

- QM: induced and spontaneous emission on the same footing




Other applications

Remember m,,=-%" [L (p; - Az, t) + Azi,t) - pi) + 2; Az, t) - Az, t)

2me c?

Photon scattering can also be handled with this Hamiltonian

(Binwar = 1| Hipy | A; e = 1)
Squared vector potential term contributes directly

Linear terms in vector potential should be considered
simultaneously in second order




Towards Planck’'s radiation law --> 1900

Consider atoms and radiation field that exchange energy by a
reversible process A v+ B such that thermal
equilibrium is established

N(A) population of higher level

N(B) population of lower level
Equilibrium  N(B) wB74 = N(A) wi—P
and also N(A) e Ba/ksT

. _ _—hwr/ksT o .
N(B) e Es/ksT e oy = Ea = Ep

emission 1/2
. e (2mh(ngqe + 1 ik
(Bl H}y |4) = a( (e )) > ena- (Ble”*® ph) (Blala, |4)
By
absorption .
~ e [ 2mhnga / oo ;
(A 1B) = = (T2 ) S ena - (812 ply) (A ala, |B)

By




Thermal occupation of modes

Ratio of rates

wAoB (ke +1) [y, eka - (817 pl) (Blaka, |4)

emmts

B—A —

wabs

Nk

and therefore N(B) _

N(A)

So thermal occupation
Familiar?
Onward to Planck!

>4, €ka - (Bl em® ply) (Blala, |A)

A—B

Wemis ehwk/kBT _ Nka +1
-~ .,B—A o
Wabs Nka
1
Nk (T) =




Derivation of Planck
Consider radiation in a black box / cavity
Made of atoms that emit and absorb all types of radiation

Use previous results to determine energy density of radiation
field in angular frequency interval  w + dw, w

Familiar calculation: count contribution of all states in interval

Before (# of states < (w + dw) — (# of states < w) = p, dw

vV oow?
= ) &3 dw dS)

Now all angles  d€2 = 4m  and polarizations --> 2

Multiply with energy X population per volume

B 1 hw4 0 Vo ow?  hw? 1
T ew/keT _ 1V T(2m)3 B w2c8 ehw/keT _ ]

U(w)




Planck --> 1900 where it all began
- Switch to frequency distribution

dw hws 1
Ulv) = U(w)ﬁ 203 ohw/kpT _ 127T
8whys 1

- Planck’'s famous radiation law!

The end! Thanks for an enjoyable year!




