Inclusion of the electromagnetic field in
Quantum Mechanics
similar to Classical Mechanics
but with interesting consequences

* Maxwell's equations

» Scalar and vector potentials

* Lorentz force

» Transform to Lagrangian

» Then Hamiltonian

* Minimal coupling to charged particles




Maxwell's equations

Gaussiah units

V. -E(x,t) = d4np(x,t)
V- -B(x,t) = 0
VxE@xt) = —29B@
’ c Ot |
10 47




Scalar and Vector potential

Quantum applications require replacing
electric and magnetic fields!

B = VxA imples V-B=0
From Faraday V x (E+12A>:O
c Ot
10
10A
or E = —VCI)——a—
c Ot

in terms of vector and scalar potentials.
Homogeneous equations are automatically solved.




Gauge freedom

Remaining equations using V x (Vx A) =V (V-A)-V?A

10
Vd+-—(V-A) = —4
1 0¢A 1 0P A7
24 B _ 1 0% _ T
va c? Ot? V<V A_l_cf)’t) ¢’

To decouple one could choose (gauge freedom)

1
V- -A- _(‘9(1):0
c Ot

more later... first




Coupling to charged particles

Lorentz F =q {E + 1fu X B}
C
Rewrite F:q{—V@—lﬁ—A—l-l’Ux(VxA)}
c Ot c
Note vx(VxA)=V@w-A-(v-V)A
0A dA
and EJF(’U'V)A:E
Sothat F— -vu+ 2% withv—go—-9%.4

dt Ov C




Check

1
Yields Lorentz fromL =T — U = im’v2 —q® + v . A
c

| . d oL  OL 0
Equations of motion oo ow
OL
Generalized momentum P muv + 14

T v c

Solve for v and substitute in Hamiltonian
--> Hamiltonian for a charged particle

_ 1 4)?
H:p-v—L:(p 27%) i




Include external electromagnetic field in QM

Static electric field: nothing new (position --> operator)

* Include static magnetic field with momentum and position

operators o (p B %A(a:))Q

2m

1
Note velocity operator V= — (p — gA)
m c

Note Hamiltonian not “free" particle one

Use haAj
i)A' —
pi 4] 1 0x;
. qh
- to show that |v;,v;| = 1—=¢€;;1 B
0 Snow Tha [ 1 ]] m2c 17kPk 1

Gauge independent! So think in ferms of H = §m\fv|2




Include external electromagnetic field
Include uniform magnetic field
For example by B(x) = Bz

. .qghB
Only nonvanishing commutator  [vg, vy] =i

m2c
Write Hamiltonian as |

H:§m(v§+v§+v§)

Pz : : :
but now vz = " so this corresponds to free particle motion
parallel fo magnetic field (true classically too)

Only consider

1
H = 5 (vg —l—vi)

Operators don't commute but commutator is a complex number!
So...




Harmonic oscillator again...

Motion perpendicular to magnetic field --> harmonic oscillator

Introduce a = 2;; (0g + iv,)
m .
ol = T (v — ivy)
- B
with cyclotron frequency w, = 2
mc

Straightforward to check [a, aT] =1

So Hamiltonian becomes

H = hw, (aTa +%)

and consequently spectrum is (called Landau levels)
E, = hw: (n +1) n=01,...




Aharanov-Bohm effect

Consider hollow cylindrical shell

ry I,

\ 4

Magnetic field inside inner cylinder either on or of f

Charged particle confined between inner and outer radius as well
as top and bottom




Discussion

Without field:

Wave function vanishes at the radii of the cylinders as well as top and
bottom --> discrete energies

With field (think of solenoid)

No magnetic field where the particle moves; inside in z-direction and
constant

Spectrum changes because the vector potential is needed in the Hamiltonian
Use Stokes theorem / (VxA) nda= 7{ A-de
S C

Only z-component of magnetic field so left-hand side becomes

/ (VxA) nda= / BO(r, — p)da = Brr}
S S
for any circular loop outside inner cylinder (and centered)

Vector potential in the direction of ¢ and line integral --> 277

A= Br? . modifying the Hamiltonian and the spectruml!
To2r

Resulting in




No field

Example

+ Example of radial wave function

* Problem solved in cylindrical coordinates

Figure 2: Radial eigenfunction for n =4 and f =0

Also with field --> \/ \/

Figure 3: Radial eigenfunctions for f =0 and f = 0.4




Quantize electromagnetic field

*Classical free field equations
‘Quantize

‘Photons

*Coupling to charged particles

*One-body operator acting on charged particles and
photons




Maxwell's equations

Gaussian units

V. -E(x,t) = d4wp(x,t)
V- -B(x,t) = 0
VxE@xt) = —22 B
’ c Ot ’
10 A




Scalar and Vector potential

Quantum applications require replacing
electric and magnetic fields!

EFE = —Vb-— ——
B = VxA

in terms of vector and scalar potentials.
Homogeneous equations are automatically solved.




Gauge freedom

Remaining equations

10
p+-—(V-A) = —4
\V4 +65’t(v ) TP
1 0°A 1 0P 47
2 A -7 _ 0
VoA c? Ot? V(V +c@t> cd

To decouple employ gauge freedom.

Observe: adding gradient of scalar function to
vector potential yields same magnetic field

To keep electric field the same: change scalar
potential accordingly!




Gauge transformation
- Explicitly A = A'=A+VA

- With F = -V — —— --> same E&M fields

+ Can always find potentials that satisfy V- A+ —— =0
» If not: choose A such that

c Ot

1 0%’ 1 0P 1 9%A
—V - A+ = — V- - A+ "= 2N —
V=V +C(9t v _l_c@t_'_v c? 02t




Employ this gauge freedom

10
P4+ - —(V-A) = —4
Vo + - o (V- A) mp
1 9°A 10 A7
A — — LA+ = = ——3
v c? Ot? v <V c 875) c?
1 0d
Can choose V- A+ s 0  (Lorentz gauge)
C
Leads to wave equations
1 0%
28 —
Voo 2 g A p
2
VA — L o°A = —4my




Radiation gauge

10
p+-—(V-A) = —4
\Y% +66’t(v ) TP
1 0°A 1 0 47
2A .A -7 _ __.
v c? Ot? V<V +c@t> cd

Alternative: radiation gauge (Coulomb, or
transverse gauge)--> useful for quantizing
free field V- A=0
yields V0 = —4mp

1 0%°A 1_0® A4n

2A _ - .
v c? Ot? cvﬁt cj




Instantaneous Coulomb

x' 1
Yields instantaneous Coulomb potential ®(x,t) :/ d>x’ ]i)c( w’)\
v _
Vector potential --> inhomogeneous wave equation

rhs can be calculated from instantaneous Coulomb potential

Now no sources = free field = 1%‘?
C
92 4 B = VxA
1
2A _ .
ahd V CRET 0 — solve in

large box with volume vV =1°




Free field solutions

Use periodic BC so expand in plane waves to avoid standing ones

27

Allowedvalues k, = Ny Mg = 0,£1, 42, ... alsoforyandz

. . 1 . /
Normalization V/ do ¢! k—K)e _ 5
Vv

1 -
So solution can be writtenas  A(zx,t) = NG > Ag(t) e
k

Gauge choice = k-Ap =0

So for future reference: A = Z ekaAka (polarizations)
a=1,2

0% A (t)

572 + c*k*Ak(t) =0 for each mode

From wave equation




Harmonic solutions

Fourier coefficients oscillate harmonically = wy = ck
So time dependence: Ag(t) = e Rt Ay,
Given initial distribution of Ag(t = 0) --> problem solved!

E&M fields real so make vector potential explicitly real

Az, t) = ﬁ (Z Ap(t)e™® + 3 A,’;(t)e“‘“'a’>
k k

_ % zk: (Aw(t) + A% ()] e




Fields

1 :
Use Alx.t) = —— Ap(t) + A* (1) e
@0 = 575 2 [0+ 4%(0)] ¢
Then electric field
10A
BEl@t) = %
= T Ek (—iwr Ag(t) + iwy A_k(t))ek
7 .
_ Au(t) — A* . (t 1k-x
QC\/VZk “r [Ar(t) — AT (0)]
and magnetic field
B(x,t) = VxA

_ 23? Ek: kx [An(t) + A" ()] e




Energy in field

1
7i8

Use E(x,t) QC\F Z W Ak A*—k(tﬂ ik

Note fields are real so

/dwE°E — /dwE-E*
1% 1%

/ dz) ) 4c2vwk (Ak(t) = AZy (1)) ™7

k Kk’
< (A (1) — A (1)) e

} 2

1
Orthogonality = = > wp |AR(t) —
k

= YRk - A0
k




Energy in field continued

Similarly /v de B-B = / dr B - B*
(exercise) _ _Zkg Au(t) + A% (1)
[ — 2 * 2
So with /v dwE-E—ZEk:k: |Ag(t) — A (D))
1
Energy becomes H.,, = 8_/ de (E-E+ B-B)
T Jv

= ii Z 2k (|Ak(t)|2 + |A—k:(t)|2>
_ ZkQ A (1) Zk2 A’

Note: no time dependencel




Expand Fourier coefficients along
polarization vectors

Use A, = Z eraAra

a=1,2

1 2
> Hep=—Y K |Aga
87Tka Akal




Preparation for QUANTIZATION

In order to quantize, introduce real canonical variables

Qr(t) = oI [Ag(t) — Ag(1)]
k )
Invert --> Ag(t) = —icVin [Qk(t) + L;Pk(t)]
S0 lAw0F =cun Q0+ TED ] —an i+ T

And thus .....(what else)




Oscillators of course

He'm — _ZkZ ‘Ak(t)|2

Expand in polarizations Pr = Z ekalka QK = Z ekaka

then

a=1,2

1
Hem — 5 Z (Plzoz T w%Qia)
ko

a=1,2




True canonical variables

Qr, P,  are canonical variables

Check Ap(t) = e Ay
So Ap(t) = —iwp A(t)
and from  Qu(t) = QP;E [Ag(t) — AL(#)]

(

it follows Qp(t) = T
cV/4m

[—iwp Ag(t) — (iwr) AR (t)] = Pr(?)

OH.,,

. . — P =
But also Qk L OP,

OH .,
0Qr

Similarly for generalized momentum Pk — —




And now....

Back to Hamiltonian
Looks like a sum of oscillators --> treat as such!

From canonical classical variables in classical mechanics

»

Quantize by introducing commutation relations between
operators!ll (Dirac)

[Pk‘,a7 Pk:’a’: = 0

Qo Quar] = 0

[kaom Pk"oa’: — ihék,k’5a,a’




Photons

Introduce the usual operators

Oka = 22% (Pra — 1wrQka)

a};a = 22&% (Pro + iwiQra)
with commutators ko, kel = 0
:a,za,a,];,a,: = 0

' 1 -
Akoy Qpr oy — 5k,k’5a,a’




Each mode HO

Number operator for each mode  Np, = al. ara

Then [akom Nk’a’} — a/kaa’;rc’a’ak’oz’ - a};’a’ak/a/a’ko‘

— akaa;;/a/ Ak’ — a]];/a/ Ukalk’ o'

— [akaa;;/a/ — CLL/O/ aka} Ak’ o/

— 5kk’ 5aa’aka
and

[a;rcaa Nk’a’] — _5k:l<:’ 50404’@;;@

A

So enough to work with one mode N =a'a
Eigenkets of this Hermitian operator IV n) =n|n)
Consider  Na'|n) = {aT]\Af + aq n) = (n+1)a' |n)

also eigenket with eigenvalue n + 1




More
Similarly Naln) = [CLN - a} ny = (n—1)a|n)

S0 a'ln) = cp|n+1)

aln) = c_|n—1)

Normalization from A
n = (n|N|n) = (n|a’a|n) >0

Phase choice aln) = nln-—1)

Also a'|ln) = Vn+1ln+1)
Integers otherwise negative norm appears
aln) = +/nln—1)
an—1) = vVn—1|n—2)
al2) = V2]1)
all) = V1]0)
al0) = 0




Photon states

Operator that adds a photon with momentum hk and
polarization :

Upea
Single photon state
al 10) =10,0,...,0, 1, O......... ) = 1o
No quantum: vacuum state |0)
Normalized two-photon state (same mode)

1
I al |0)=10,0,...,0,2kq,0......... ) = |2ka)

—a

\/ika

Different modes
al _al, ,0)=10,0,...,0,15a,0...; 0, Lprar, 0......) = |lgalpa) = al, .al




Development

General state

+ Nkja;
(2h.0.)
|nk1041nk2052n’43043“'> — H ' ’O>
k:iozi nkiai.
So that
CLLiai nklal...nkiai..) — \/nk,iai + 1 \nklal...(nkiai -+ 1)>

Photons: quantum excitations of the radiation field since classical
vector potential has been replaced by quantum operator acting on
photon states!

7 c\V A 1
Ao = —icVinm o+ —Prol| = —iWw o + Pra X £/ 2hw
k [Qk ok ] o |—twr Qe % ]\/m k

Smh
= C\ —Oka
ok [87h
also Ap, = c¢ La,Tm
Wk




Vector potential operator

onhic?\ ? . .
A(wat) — Z ( WV ) {akaekaez(k.w_wkt) + aLaekae—z(k-w—wkt)}
k

ko

Acts on photon states: adds or removes onel
Acts on charged particle at x and 1 (first quantization)

First rewrite Hamiltonian of free field for further interpretation

No work...




Hamiltonian free field

Number operator for each mode Npa = a};aaka
Hamiltonian operator H,, = Z hwp, (Nka +%) = Z hws Nk
ko

Momentum operator from Poynting vector (exercise)
. 1

P,, = — | &®z(ExB—-BxE)
81C \V4

- Xk (Nea +4) = > N

Single photon state Hepal |0) = hwy al |0)

ﬁema};a 0) = hk a;fm 0)
So massless!

m2ct = E? — p?c® = hPwi — R*k?c® = RPk*c? — WPk*c* =0




More on photon states

Characterized also by polarization vector ep,

Transforms as vector --> interpret as 1 unit of intrinsic angular

momentum or spin of the photon
Consider circular polarization vectors
(+) 1 -
e, =F—(ex1 Te
k ?\@( k,1 k,2)

Rotate by angle 0¢ about propagation axis

ep1 —cosdp e +sindp eps = ep1+0¢eps
e;,z = —sind¢p ex1 +cosdp egoa = —0¢ €x1 + €k
. . . 1 ,
New circular polarization vectors ef’ = 5 (er.1 + iep.o)
+ 1 .
= e x 7500 (ena & (Sien,)
= e,(ci) F 10¢ egci)

: +
= (1Fi09) egc )




Angular momentum

Compare el = (17 i69) eff>
With e #7722 [1m) = e " |1m)
= (1 —imd¢) |Im)
Interpret m=1 = e,(j)
m=-1 = e,(c_)

Quantization axis along k so photons can have helicity 1 or -1
but not O --> no longitudinal photons

No contradiction (no rest frame where photon is at rest)

Photons with good helicity

aJr — L(aT j:z'aT)
ki—$\/§ k.1 k.2




