
E&M

Inclusion of the electromagnetic field in 
Quantum Mechanics

similar to Classical Mechanics 
but with interesting consequences

• Maxwell’s equations
• Scalar and vector potentials

• Lorentz force

• Transform to Lagrangian

• Then Hamiltonian

• Minimal coupling to charged particles
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Scalar and Vector potential
Quantum applications require replacing
electric and magnetic fields!
                          implies

From Faraday

so

or

in terms of vector and scalar potentials.
Homogeneous equations are automatically solved.

r ·B = 0

r⇥
✓
E +

1

c

�

�t
A

◆
= 0

E +
1

c

�

�t
A = �r�



r ·A+
1

c

��

�t
= 0

r2�+
1

c

⇤

⇤t
(r ·A) = �4�⇥

r2A� 1

c2
⇤2A

⇤t2
�r

✓
r ·A+

1

c

⇤�

⇤t

◆
= �4�

c
j

E&M

Gauge freedom

Remaining equations using

To decouple one could choose (gauge freedom)

more later… first
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Coupling to charged particles

Lorentz

Rewrite

Note

and

So that          withF = �rU +
d

dt

�U

�v

�A

�t
+ (v ·r)A =

dA

dt

F = q

⇢
E +

1

c
v ⇥B

�

v ⇥ (r⇥A) = r (v ·A)� (v ·r)A

F = q

⇢
�r�� 1

c

�A

�t
+

1

c
v ⇥ (r⇥A)

�

U = q�� q

c
v ·A



E&M

Check
Yields Lorentz from

Equations of motion

Generalized momentum

Solve for v and substitute in Hamiltonian
--> Hamiltonian for a charged particle
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Include external electromagnetic field in QM
• Static electric field: nothing new (position --> operator)
• Include static magnetic field with momentum and position 

operators

• Note velocity operator

• Note Hamiltonian not “free” particle one

• Use

• to show that

• Gauge independent! So think in terms of
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Include external electromagnetic field
• Include uniform magnetic field
• For example by

• Only nonvanishing commutator

• Write Hamiltonian as

• but now                  so this corresponds to free particle motion 
parallel to magnetic field (true classically too)

• Only consider

• Operators don’t commute but commutator is a complex number! 

• So...
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Harmonic oscillator again...
• Motion perpendicular to magnetic field --> harmonic oscillator
• Introduce

• with cyclotron frequency

• Straightforward to check

• So Hamiltonian becomes

• and consequently spectrum is (called Landau levels)
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Aharanov-Bohm effect
• Consider hollow cylindrical shell

• Magnetic field inside inner cylinder either on or off

• Charged particle confined between inner and outer radius as well 
as top and bottom
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Discussion
• Without field:

– Wave function vanishes at the radii of the cylinders as well as top and 
bottom --> discrete energies

• With field (think of solenoid)
– No magnetic field where the particle moves; inside in z-direction and 

constant 

– Spectrum changes because the vector potential is needed in the Hamiltonian

– Use Stokes theorem

– Only z-component of magnetic field so left-hand side becomes 

– for any circular loop outside inner cylinder (and centered)

– Vector potential in the direction of       and line integral -->

– Resulting in                        modifying the Hamiltonian and the spectrum!!
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Example
• No field
• Example of radial wave function

• Problem solved in cylindrical coordinates

•                        Also with field -->
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Quantize electromagnetic field

•Classical free field equations
•Quantize

•Photons

•Coupling to charged particles

•One-body operator acting on charged particles and 
photons
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Scalar and Vector potential

Quantum applications require replacing
electric and magnetic fields!

in terms of vector and scalar potentials.
Homogeneous equations are automatically solved.
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Gauge freedom
Remaining equations

To decouple employ gauge freedom.
Observe: adding gradient of scalar function to 
vector potential yields same magnetic field
To keep electric field the same: change scalar 
potential accordingly!
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Gauge transformation
• Explicitly

• With                                                  --> same E&M fields

• Can always find potentials that satisfy
• If not: choose      such that
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Employ this gauge freedom

Can choose                                          (Lorentz gauge)

Leads to wave equations
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Radiation gauge

Alternative: radiation gauge (Coulomb, or 
transverse gauge)--> useful for quantizing 
free field
yields
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Instantaneous Coulomb
Yields instantaneous Coulomb potential
Vector potential --> inhomogeneous wave equation

rhs can be calculated from instantaneous Coulomb potential

Now no sources ⇒ free field

and       ⇒ solve in 
large box with volume
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Free field solutions
Use periodic BC so expand in plane waves to avoid standing ones 
Allowed values                                                                                                                                also for y and z
Normalization

So solution can be written as

Gauge choice ⇒ 

So for future reference:                                          (polarizations)    
    

From wave equation                                               for each mode
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Harmonic solutions
Fourier coefficients oscillate harmonically  ⇒

So time dependence: 

Given initial distribution of                     --> problem solved!

E&M fields real so make vector potential explicitly real
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Ak(t = 0)
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Fields
Use

Then electric field

and magnetic field
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Energy in field
General

Use

Note fields are real so

Hem =
1

8�

Z

V
dx (E ·E +B ·B)

Z

V
dx E ·E =

Z

V
dx E ·E⇥

=

Z

V
dx

X

k

X

k

0

1

4c2V
�k

�
A

k

(t)�A

⇥
�k

(t)
�
eik·x

⇥ · �k0 (A⇥
k

0(t)�A�k

0(t)) e�ik0·x

=
1

4c2

X

k

�2
k

��
A

k

(t)�A

⇥
�k

(t)
��2

=
1

4

X

k

k2
��
A

k

(t)�A

⇥
�k

(t)
��2

E(x, t) =
i

2c
p
V

X

k

�k

⇥
A

k

(t)�A

⇥
�k

(t)
⇤
eik·x

Orthogonality



E&M

Energy in field continued

Similarly
(exercise)

So with

Energy becomes

Note: no time dependence!
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Expand Fourier coefficients along 
polarization vectors
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Preparation for QUANTIZATION
In order to quantize, introduce real canonical variables

Invert -->

So

And thus …..(what else)
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Oscillators of course
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                  are canonical variables                       

Check

So
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And now….
• Back to Hamiltonian
• Looks like a sum of oscillators --> treat as such!

• From canonical classical variables in classical mechanics

• Quantize by introducing commutation relations between 
operators!!! (Dirac)
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Photons
Introduce the usual operators

with commutators
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Each mode HO

Number operator for each mode
Then

and

So enough to work with one mode
Eigenkets of this Hermitian operator

Consider

also eigenket with eigenvalue
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More
• Similarly
• So

• Normalization from

• Phase choice
• Also

• Integers otherwise negative norm appears
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Photon states
• Operator that adds a photon with momentum         and 

polarization

• Single photon state

• No quantum: vacuum state

• Normalized two-photon state (same mode)

• Different modes
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Development
• General state

• So that

• Photons: quantum excitations of the radiation field since classical 
vector potential has been replaced by quantum operator acting on 
photon states!

•                               also
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Vector potential operator

Acts on photon states: adds or removes one!

Acts on charged particle at x and t (first quantization)

First rewrite Hamiltonian of free field for further interpretation

No work...
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Hamiltonian free field

Number operator for each mode
Hamiltonian operator

Momentum operator from Poynting vector (exercise)

Single photon state

So massless!
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More on photon states
• Characterized also by polarization vector
• Transforms as vector --> interpret as 1 unit of intrinsic angular 

momentum or spin of the photon

• Consider circular polarization vectors

• Rotate by angle         about propagation axis

• New circular polarization vectors
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Angular momentum
• Compare

• With

• Interpret

• Quantization axis along        so photons can have helicity 1 or -1 
but not 0 --> no longitudinal photons

• No contradiction (no rest frame where photon is at rest)

• Photons with good helicity
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