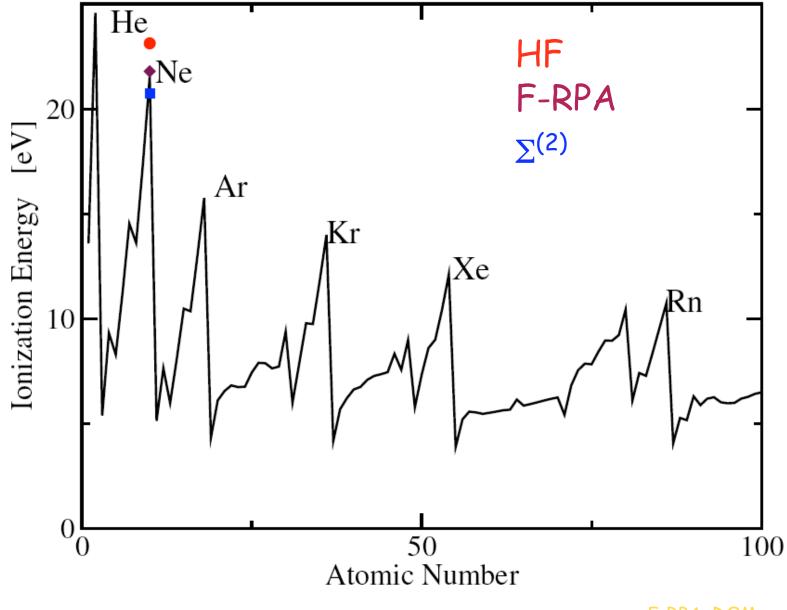
Periodic table



F-RPA, DOM and QP-DFT

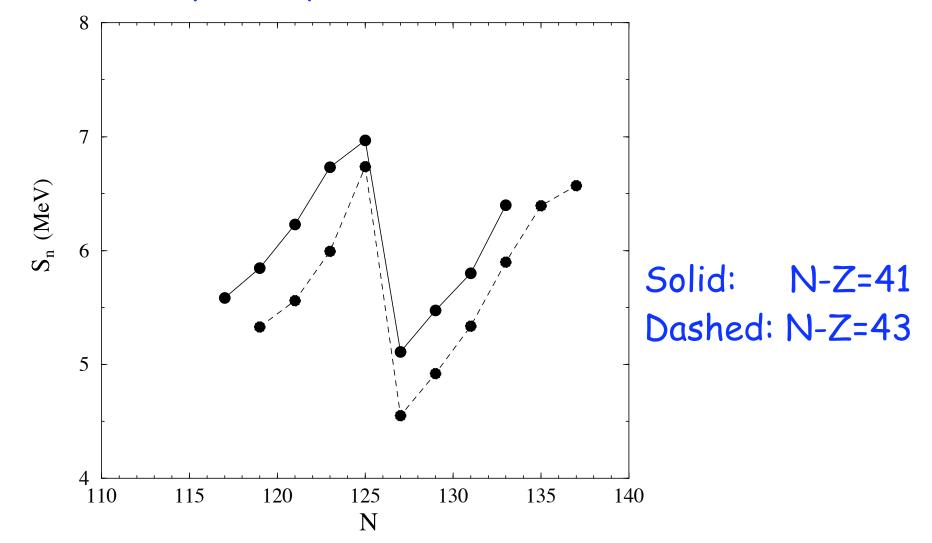
Nucleons in nuclei

- Atoms: shell closures at 2,10,18,36,54,86
- Similar features observed in nuclei
- Notation:
 - # of neutrons N
 - # of protons Z
 - # of nucleons A = N + Z
- Equivalent of ionization energy: separation energy
 - for protons $S_p(N,Z) = B(N,Z) B(N,Z-1)$
 - for neutrons $S_n(N,Z) = B(N,Z) B(N-1,Z)$
 - binding energy

$$M(N,Z) = \frac{E(N,Z)}{c^2} = N \ m_n \ + \ Z \ m_p \ - \ \frac{B(N,Z)}{c^2}$$

Shell closure at N=126

Odd-even effect: plot only even Z

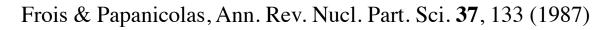


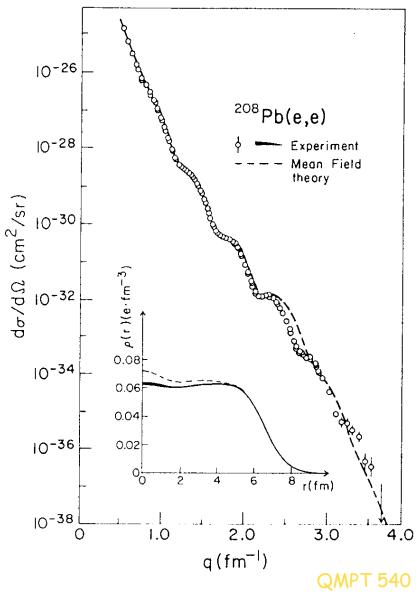
- Also at other values N and Z: 2, 8, 20, 28, 50, and 82
- "Magic numbers"

QMPT 540

Empirical potential

- Analogy to atoms suggests finding a sp potential \Rightarrow shells + IPM
- Difference(s) with atoms?
- Properties of empirical potential
 - overall?
 - size?
 - shape?
- Consider nuclear charge density



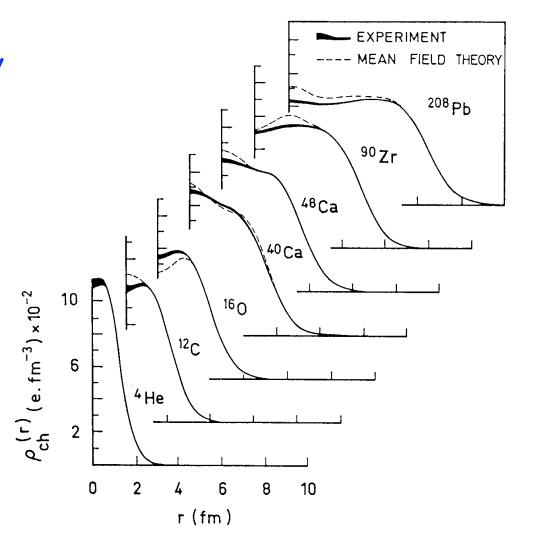


Nuclear density distribution

- Central density (A/Z* charge density) about the same for nuclei heavier than ¹⁶O, corresponding to 0.16 nucleons/fm³
- Important quantity
- Shape roughly represented by

$$\rho_{ch}(r) = \frac{\rho_0}{1 + \exp\left(\frac{r-c}{z}\right)}$$
$$c \approx 1.07 A^{\frac{1}{3}} \text{fm}$$
$$z \approx 0.55 \text{fm}$$

• Potential similar shape



Empirical potential

- Bohr & Mottelson Vol.1 $U = V f(r) + V_{\ell s} \left(\frac{\ell \cdot s}{\hbar^2}\right) r_0^2 \frac{1}{r} \frac{d}{dr} f(r)$
- Central part roughly follows shape of density

$$f(r) = \left[1 + \exp\left(\frac{r-R}{a}\right)\right]^{-1}$$

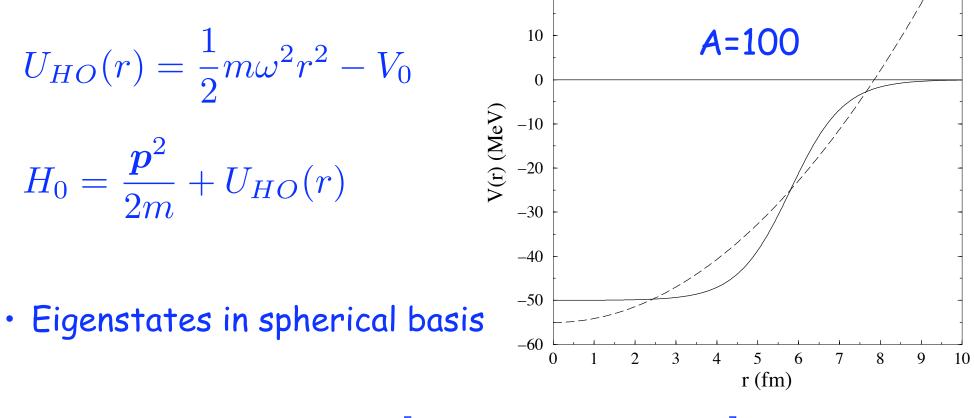
- Woods-Saxon form
- Depth $V = \begin{bmatrix} -51 \pm 33 & \left(\frac{N-Z}{A}\right) \end{bmatrix}$ MeV + neutrons

- protons

- radius $R = r_0 \ A^{1/3}$ with $r_0 = 1.27 \ {
 m fm}$
- diffuseness a = 0.67 fm

Analytically solvable alternative

- Woods-Saxon (WS) generates finite number of bound states
- IPM: fill lowest levels \Rightarrow nuclear shells \Rightarrow magic numbers
- reasonably approximated by 3D harmonic oscillator



 $H_{HO} \left| n\ell m_{\ell} m_s \right\rangle = \left[\hbar \omega (2n + \ell + \frac{3}{2}) - V_0 \right] \left| n\ell m_{\ell} m_s \right\rangle$

Harmonic oscillator

- Filling of oscillator shells
- \cdot # of quanta $N=2n+\ell$

N	n	ℓ	# of particles	"magic #"	parity
0	0	0	2	2	+
1	0	1	6	8	-
2	1	0	2		+
2	0	2	10	20	+
3	1	1	6		-
3	0	3	14	40	-
4	2	0	2		+
4	1	2	10		+
4	0	4	18	70	+

Need for another type of sp potential

- 1949 Mayer and Jensen suggest the need of a spin-orbit term
- Requires a coupled basis

$$|n(\ell s)jm_j\rangle = \sum_{m_\ell m_s} |n\ell m_\ell m_s\rangle (\ell \ m_\ell \ s \ m_s| \ j \ m_j)$$

• Use $\boldsymbol{\ell}\cdot \boldsymbol{s}=_{\frac{1}{2}}(\boldsymbol{j}^2-\boldsymbol{\ell}^2-\boldsymbol{s}^2)$ to show that these are eigenstates

$$\frac{\ell \cdot s}{\hbar^2} |n(\ell s)jm_j\rangle = \frac{1}{2} \left(j(j+1) - \ell(\ell+1) - \frac{1}{2}(\frac{1}{2}+1) \right) |n(\ell s)jm_j\rangle$$

- For $j = \ell + \frac{1}{2}$ eigenvalue $\frac{1}{2}\ell$
- while for $j = \ell \frac{1}{2}$ $-\frac{1}{2}(\ell + 1)$
- so SO splits these levels! and more so with larger ℓ

QMPT 540

Inclusion of SO potential and magic numbers

-0i, 1g, 2d, 3s $N = 6, \pi +$ Sign of SO? [126] $V_{\ell s}\left(\frac{\boldsymbol{\ell}\cdot\boldsymbol{s}}{\hbar^2}\right)r_0^2\frac{1}{r}\frac{d}{dr}f(r)$ $-2p\frac{3}{2}$ $- 0h_{\frac{9}{2}} \frac{1f_{\frac{7}{2}}}{-}$ -0h, 1f, 2p $N = 5, \pi -$ 82[12] $V_{\ell s} = -0.44V$ $2s\frac{1}{2}$ $-1d_{\frac{3}{2}}$ - $1d_{\frac{5}{2}}$ - Consequence for $N = 4, \pi +$ -0g, 1d, 2s-[50] $0f_{\frac{7}{2}}$ - 0gg -[10] $\frac{-0}{1p_{\frac{3}{2}}} \frac{0f_{\frac{5}{2}}}{-1p_{\frac{1}{2}}} \frac{1p_{\frac{1}{2}}}{-1p_{\frac{1}{2}}}$ $0g_{\frac{9}{2}}$ -0f, 1p $N = 3, \pi -$ |28| $0h\frac{11}{2}$ 8 |20| $\frac{1s_{\frac{1}{2}}}{0d_{\frac{5}{2}}} \frac{1s_{\frac{1}{2}}}{-}$ $\frac{4}{2}$ $0i\frac{13}{2}$ ---0d, 1s - $N = 2, \pi +$ -- [8] Noticeably shifted ____ 0*p* - $N = 1, \pi -$

 $N = 0, \pi + \dots = 0s \dots = 0s_{\frac{1}{2}}$

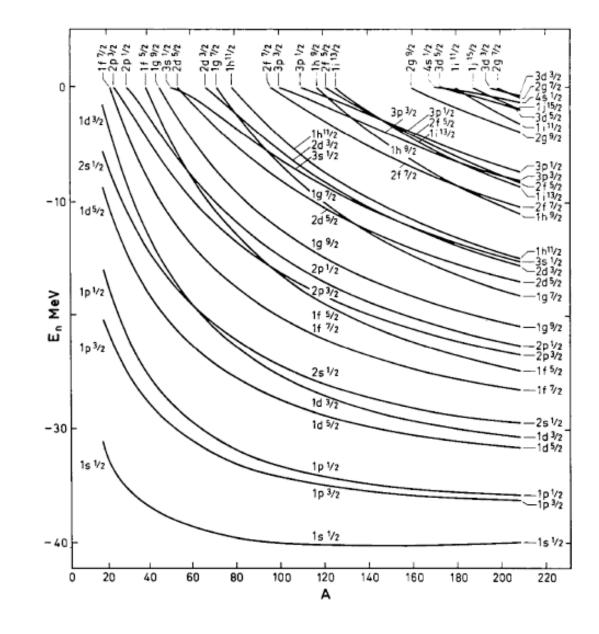
• Correct magic numbers!

--- [2]

[2]

Neutron levels as a function of A

- Phenomenological!
- Calculated from Woods-Saxon plus spin-orbit



NucPhys