Periodic table

Nucleons in nuclei

- Atoms: shell closures at $2,10,18,36,54,86$
- Similar features observed in nuclei
- Notation:
- \# of neutrons N
- \# of protons Z
- \# of nucleons $\quad A=N+Z$
- Equivalent of ionization energy: separation energy
- for protons $\quad S_{p}(N, Z)=B(N, Z)-B(N, Z-1)$
- for neutrons $\quad S_{n}(N, Z)=B(N, Z)-B(N-1, Z)$
- binding energy

$$
M(N, Z)=\frac{E(N, Z)}{c^{2}}=N m_{n}+Z m_{p}-\frac{B(N, Z)}{c^{2}}
$$

Shell closure at $\mathrm{N}=126$

- Odd-even effect: plot only even Z

- Also at other values N and $Z: 2,8,20,28,50$, and 82
- "Magic numbers"

Empirical potential

- Analogy to atoms suggests finding a sp potential \Rightarrow shells + IPM
- Difference(s) with atoms?
- Properties of empirical potential
- overall?
- size?
- shape?
- Consider nuclear charge density

Frois \& Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987)

Nuclear density distribution

- Central density (A/Z* charge density) about the same for nuclei heavier than ${ }^{16} \mathrm{O}$, corresponding to 0.16 nucleons $/ \mathrm{fm}^{3}$
- Important quantity
- Shape roughly represented by

$$
\begin{aligned}
\rho_{c h}(r) & =\frac{\rho_{0}}{1+\exp \left(\frac{r-c}{z}\right)} \\
c & \approx 1.07 A^{\frac{1}{3}} \mathrm{fm} \\
\quad z & \approx 0.55 \mathrm{fm}
\end{aligned}
$$

- Potential similar shape

Empirical potential

- Bohr \& Mottelson Vol. 1

$$
U=V f(r)+V_{\ell s}\left(\frac{\ell \cdot s}{\hbar^{2}}\right) r_{0}^{2} \frac{1}{r} \frac{d}{d r} f(r)
$$

- Central part roughly follows shape of density

$$
f(r)=\left[1+\exp \left(\frac{r-R}{a}\right)\right]^{-1}
$$

- Woods-Saxon form
- Depth $\quad V=\left[-51 \pm 33\left(\frac{N-Z}{A}\right)\right] \mathrm{MeV}$
- protons
- radius $R=r_{0} A^{1 / 3}$ with $r_{0}=1.27 \mathrm{fm}$
- diffuseness $a=0.67 \mathrm{fm}$

Analytically solvable alternative

- Woods-Saxon (WS) generates finite number of bound states
- IPM: fill lowest levels \Rightarrow nuclear shells \Rightarrow magic numbers
- reasonably approximated by 3D harmonic oscillator

$$
\begin{aligned}
& U_{H O}(r)=\frac{1}{2} m \omega^{2} r^{2}-V_{0} \\
& H_{0}=\frac{p^{2}}{2 m}+U_{H O}(r) \\
& \text { - Eigenstates in spherical basis }
\end{aligned}
$$

Harmonic oscillator

- Filling of oscillator shells
- \# of quanta $\quad N=2 n+\ell$

N	n	ℓ	\# of particles	"magic \#"	parity
0	0	0	2	2	+
1	0	1	6	8	-
2	1	0	2		+
2	0	2	10	20	+
3	1	1	6		-
3	0	3	14	40	-
4	2	0	2		+
4	1	2	10		+
4	0	4	18	70	+

Need for another type of sp potential

- 1949 Mayer and Jensen suggest the need of a spin-orbit term
- Requires a coupled basis

$$
\left|n(\ell s) j m_{j}\right\rangle=\sum_{m_{\ell} m_{s}}\left|n \ell m_{\ell} m_{s}\right\rangle\left(\ell m_{\ell} s m_{s} \mid j m_{j}\right)
$$

- Use $\ell \cdot s=\frac{1}{2}\left(j^{2}-\ell^{2}-s^{2}\right)$ to show that these are eigenstates

$$
\frac{\ell \cdot \boldsymbol{s}}{\hbar^{2}}\left|n(\ell s) j m_{j}\right\rangle=\frac{1}{2}\left(j(j+1)-\ell(\ell+1)-\frac{1}{2}\left(\frac{1}{2}+1\right)\right)\left|n(\ell s) j m_{j}\right\rangle
$$

- For

$$
j=\ell+\frac{1}{2} \quad \text { eigenvalue } \quad \frac{1}{2} \ell
$$

- while for $\quad j=\ell-\frac{1}{2}$

$$
-\frac{1}{2}(\ell+1)
$$

- so SO splits these levels! and more so with larger ℓ

Inclusion of SO potential and magic numbers

- Sign of SO?
$V_{\ell s}\left(\frac{\ell \cdot s}{\hbar^{2}}\right) r_{0}^{2} \frac{1}{r} \frac{d}{d r} f(r)$
$V_{\ell s}=-0.44 \mathrm{~V}$
- Consequence for

$$
\begin{array}{r}
0 f \frac{7}{2} \\
0 g \frac{9}{2} \\
0 h \frac{11}{2} \\
0 i \frac{13}{2}
\end{array}
$$

- Noticeably shifted
- Correct magic numbers!

Neutron levels as a function of A

- Phenomenological!
- Calculated from WoodsSaxon plus spin-orbit

