Electrons in atoms

- Atomic units (a.u.) --> standard usage
- electron mass m_{e} unit of mass
- elementary charge e unit of charge
- length and time such that numerical values of \hbar and $4 \pi \epsilon_{0}$ are unity
- then atomic unit of length Bohr radius

$$
\text { a.u. }(\text { length })=a_{0}=\frac{4 \pi \epsilon_{0} \hbar^{2}}{e^{2} m_{e}} \approx 5.29177 \times 10^{-11} \mathrm{~m}
$$

- and time a.u. (time) $=\frac{a_{0}}{\alpha c} \approx 2.41888 \times 10^{-17} \mathrm{~s}$
- where

$$
\alpha=\frac{e^{2}}{4 \pi \epsilon_{0} \hbar c} \approx \frac{1}{137.036} \quad \text { is the fine structure constant }
$$

- energy unit $=$ Hartree $\quad E_{H}=\frac{\hbar^{2}}{m_{e} a_{0}^{2}} \approx 27.2114 \mathrm{eV}$

Hamiltonian in a.u.

- Most of atomic physics can be understood on the basis of

$$
H_{N}=\sum_{i=1}^{N} \frac{\boldsymbol{p}_{i}^{2}}{2}-\sum_{i=1}^{N} \frac{Z}{\left|\boldsymbol{r}_{i}\right|}+\frac{1}{2} \sum_{i \neq j}^{N} \frac{1}{\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|}+V_{\operatorname{mag}}
$$

- for most applications $\quad V_{m a g} \Rightarrow V_{s o}^{e f f}=\sum_{i} \zeta_{i} \ell_{i} \cdot s_{i}$
- Relativistic description required for heavier atoms
- binding sizable fraction of electron rest mass
- binding of lowest s state generates high-momentum components
- Sensible calculations up to Kr without $V_{\text {mag }}$
- Shell structure well established

Shell structure

- Simulate with

$$
H_{0}^{N}=\sum_{i=1}^{N} H_{0}(i)
$$

- with

$$
H_{0}(i)=\frac{\boldsymbol{p}_{i}^{2}}{2}-\frac{Z}{r_{i}}+U\left(\boldsymbol{r}_{i}\right)
$$

- even without auxiliary potential \Rightarrow shells
- hydrogen-like: $(2 \ell+1) *(2 s+1)$ degeneracy
- but $\quad \varepsilon_{n}=-\frac{Z^{2}}{2 n^{2}}$ does not give correct shell structure (2,10,28...
- degeneracy must be lifted
- how?

Effect of other electrons in neutral atoms

- Consider effect of electrons in closed shells for neutral Na
- large distances: nuclear charge screened to 1
- close to the nucleus: electron "sees" all 11 protons
- approximately:

- lifts H-like degeneracy: $\quad \varepsilon_{2 s}<\varepsilon_{2 p}$

$$
\varepsilon_{3 s}<\varepsilon_{3 p}<\varepsilon_{3 d}
$$

- "Far away" orbits: still hydrogen-like!

Example: Na

- Fill the lowest shells
- Use schematic potential

$$
H_{0}\left|n \ell m_{\ell} m_{s}\right\rangle=\varepsilon_{n \ell}\left|n \ell m_{\ell} m_{s}\right\rangle
$$

- Ground state: fill lowest orbits according to Pauli
$\left|300 m_{s}, 211_{\frac{1}{2}}, 211-\frac{1}{2}, \ldots, 100_{\frac{1}{2}}, 100-\frac{1}{2}\right\rangle \equiv \stackrel{\text { H. }}{\text { แ. }}$ $\left|\Phi_{0}(\mathrm{Na})\right\rangle$
- Excited states?

Closed-shell atoms

- Neon
- Ground state
- Excited states

$$
\left|n \ell(2 p)^{-1}\right\rangle=a_{n \ell}^{\dagger} a_{2 p}\left|\Phi_{0}(\mathrm{Ne})\right\rangle
$$

- operators: see later
- Note the H-like states
- Splitting?

- Basic shell structure of atoms understood \Rightarrow IPM

Periodic table

Level sequence (approximately)

Helium

- IPM description is very successful
- Closed-shell configuration $1 s^{2}$
- Reaction more complicated than for Hydrogen
- DWIA (distorted wave impulse approximation)

$$
\begin{aligned}
& \left.S=\int d \boldsymbol{p}\left|\left\langle\Psi_{n}^{N-1}\right| a_{p}\right| \Psi_{0}^{N}\right\rangle\left.\right|^{2} \\
& \text { agreement with IPM! } \\
& \rightarrow 1
\end{aligned}
$$

Phys. Rev. A8, 2494 (1973)

Other closed-shell atoms

- Spectroscopic factor becomes less than 1
- Neon $2 p$ removal: $S=0.92$ with two fragments each 0.04
- IPM not the whole story: fragmentation of sp strength
- Summed strength: like IPM
- IPM wave functions still excellent
- Example: Argon $3 p \mathrm{~S}=0.95$
- Rest in 3 small fragments

Argon spectroscopic factors

- s strength also in the continuum: $\mathrm{Ar}^{++}+e$
- note vertical scale
- red bars: 3s fragments exhibit substantial fragmentation

	$\begin{aligned} & 3 s^{2} 3 p^{5} \\ & 0.95 \end{aligned}$	$\\| 3 s 3 p^{6}$ $3 p^{4} 4 s$	Argon $3 p^{4} n d$ 8\% $\mathrm{Ar}^{++}+\mathrm{e}$
$E_{n}^{N-1}-E_{0}^{N}(\mathrm{eV})$			

Fragmentation in atoms

- ~All the strength remains below (above) the Fermi energy in closed-shell atoms
- Fragmentation can be interpreted in terms of mixing between

$$
a_{\alpha}\left|\Phi_{0}^{N}\right\rangle
$$

- and

$$
a_{\beta} a_{\gamma} a_{\delta}^{\dagger}\left|\Phi_{0}^{N}\right\rangle
$$

- with the same "global" quantum numbers
- Example: Argon ground state $\left|\Phi_{0}^{N}\right\rangle=\left|(3 s)^{2}(3 p)^{6}(2 s)^{2}(2 p)^{6}(1 s)^{2}\right\rangle$
- Ar^{+}ground state $\left|(3 p)^{-1}\right\rangle=a_{3 p}\left|\Phi_{0}^{N}\right\rangle=\left|(3 s)^{2}(3 p)^{5}(2 s)^{2}(2 p)^{6}(1 s)^{2}\right\rangle$
- excited state $\quad\left|(3 s)^{-1}\right\rangle=a_{3 s}\left|\Phi_{0}^{N}\right\rangle=\left|(3 s)^{1}(3 p)^{6}(2 s)^{2}(2 p)^{6}(1 s)^{2}\right\rangle$
- also $\left|(3 p)^{-2} 4 s\right\rangle=a_{3 p} a_{3 p} a_{4 s}^{\dagger}\left|\Phi_{0}^{N}\right\rangle=\left|(4 s)^{1}(3 s)^{2}(3 p)^{4}(2 s)^{2}(2 p)^{6}(1 s)^{2}\right\rangle$
- and $\left|(3 p)^{-2} n d\right\rangle=a_{3 p} a_{3 p} a_{n d}^{\dagger}\left|\Phi_{0}^{N}\right\rangle=\left|(n d)^{1}(3 s)^{2}(3 p)^{4}(2 s)^{2}(2 p)^{6}(1 s)^{2}\right\rangle$

