Electrons in atoms

- Atomic units (a.u.) --> standard usage
 - electron mass m_e unit of mass
 - elementary charge e unit of charge
 - length and time such that numerical values of $~\hbar~$ and $4\pi\epsilon_0$ are unity
 - then atomic unit of length Bohr radius

a.u. (length) =
$$a_0 = \frac{4\pi\epsilon_0\hbar^2}{e^2m_e} \approx 5.29177 \times 10^{-11} \text{ m}$$

- and time a.u. (time) =
$$\frac{a_0}{\alpha c} \approx 2.41888 \times 10^{-17} \text{ s}$$

- where
$$\alpha = \frac{e^2}{4\pi\epsilon_0\hbar c} \approx \frac{1}{137.036}$$
 is the fine structure constant
- energy unit = Hartree $E_H = \frac{\hbar^2}{m_e a_0^2} \approx 27.2114 \text{ eV}$

Hamiltonian in a.u.

• Most of atomic physics can be understood on the basis of

$$H_N = \sum_{i=1}^{N} \frac{p_i^2}{2} - \sum_{i=1}^{N} \frac{Z}{|r_i|} + \frac{1}{2} \sum_{i \neq j}^{N} \frac{1}{|r_i - r_j|} + V_{mag}$$
• for most applications $V_{mag} \Rightarrow V_{so}^{eff} = \sum_i \zeta_i \ \ell_i \cdot s_i$

- Relativistic description required for heavier atoms
 - binding sizable fraction of electron rest mass
 - binding of lowest s state generates high-momentum components
- Sensible calculations up to Kr without V_{mag}
- Shell structure well established

Shell structure

Simulate with

• with

$$egin{aligned} &H_0^N = \sum_{i=1}^N H_0(i)\ &H_0(i) = rac{m{p}_i^2}{2} - rac{Z}{r_i} + U(m{r}_i) \end{aligned}$$

- even without auxiliary potential \Rightarrow shells
 - hydrogen-like: $\frac{(2\ell+1)*(2s+1)}{Z^2}$ degeneracy but $\varepsilon_n = -\frac{Z^2}{2n^2}$ does not give correct shell structure (2,10,28...

 - degeneracy must be lifted
 - how?

Effect of other electrons in neutral atoms

- Consider effect of electrons in closed shells for neutral Na
- large distances: nuclear charge screened to 1
- close to the nucleus: electron "sees" all 11 protons

• lifts H-like degeneracy: $arepsilon_{2s} < arepsilon_{2p}$

 $\varepsilon_{3s} < \varepsilon_{3p} < \varepsilon_{3d}$

• "Far away" orbits: still hydrogen-like!

Example: Na

- Fill the lowest shells
- Use schematic potential $H_0 |n\ell m_\ell m_s\rangle = \varepsilon_{n\ell} |n\ell m_\ell m_s\rangle$
- Ground state: fill lowest
 orbits according to Pauli

 $|300m_s, 211_{\frac{1}{2}}, 211_{-\frac{1}{2}}, ..., 100_{\frac{1}{2}}, 100_{-\frac{1}{2}} \rangle \equiv |\Phi_0(\mathrm{Na})\rangle$

• Excited states?

Closed-shell atoms

- Neon f p dH-like Ground state $\begin{bmatrix} 7 \\ 6 \\ 5 \end{bmatrix} \begin{bmatrix} 6 \\ 5 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \end{bmatrix} \begin{bmatrix} 6 \\ 4 \end{bmatrix} \begin{bmatrix} 7 \\ 6 \\ 6 \end{bmatrix} \begin{bmatrix} 7 \\ 7 \\ 6 \end{bmatrix} \begin{bmatrix} 7 \\ 7 \\ 7 \end{bmatrix} \begin{bmatrix} 7 \\ 7 \\$ $|\Phi_0(\text{Ne})\rangle = |211\frac{1}{2}, 211-\frac{1}{2}, ..., 100\frac{1}{2}, 100-\frac{1}{2}\rangle$ Energy [eV] Excited states $|n\ell (2p)^{-1}\rangle = a_{n\ell}^{\dagger}a_{2p} |\Phi_0(\text{Ne})\rangle$ • operators: see later Neon Note the H-like states Splitting?
- Basic shell structure of atoms understood \Rightarrow IPM

523-14

Periodic table

Level sequence (approximately)

523-14

Helium

- IPM description is very successful
- Closed-shell configuration $1s^2$
- Reaction more complicated than for Hydrogen
- DWIA (distorted wave impulse approximation)

Other closed-shell atoms

- Spectroscopic factor becomes less than 1
- Neon 2p removal: S = 0.92 with two fragments each 0.04
- IPM not the whole story: fragmentation of sp strength
- Summed strength: like IPM
- IPM wave functions still excellent
- Example: Argon 3p S = 0.95
- Rest in 3 small fragments

Argon spectroscopic factors

- s strength also in the continuum: $Ar^{++} + e$
- note vertical scale
- red bars: 3s fragments exhibit substantial fragmentation

Fragmentation in atoms

- ~All the strength remains below (above) the Fermi energy in closed-shell atoms
- Fragmentation can be interpreted in terms of mixing between

$$a_{lpha} \ket{\Phi_0^N}$$
 $a_{eta} a_{\gamma} a_{\delta}^{\dagger} \ket{\Phi_0^N}$

• and

- with the same "global" quantum numbers
- + Example: Argon ground state $|\Phi_0^N
 angle=|(3s)^2(3p)^6(2s)^2(2p)^6(1s)^2
 angle$
- Ar⁺ ground state $|(3p)^{-1}\rangle = a_{3p} |\Phi_0^N\rangle = |(3s)^2 (3p)^5 (2s)^2 (2p)^6 (1s)^2\rangle$
- excited state $|(3s)^{-1}\rangle = a_{3s} |\Phi_0^N\rangle = |(3s)^1 (3p)^6 (2s)^2 (2p)^6 (1s)^2\rangle$
- also $|(3p)^{-2}4s\rangle = a_{3p}a_{3p}a_{4s}^{\dagger} |\Phi_0^N\rangle = |(4s)^1(3s)^2(3p)^4(2s)^2(2p)^6(1s)^2\rangle$
- and $|(3p)^{-2}nd\rangle = a_{3p}a_{3p}a_{nd}^{\dagger} |\Phi_0^N\rangle = |(nd)^1(3s)^2(3p)^4(2s)^2(2p)^6(1s)^2\rangle_{523-14}$