Wave functions

- Shells

- Orthogonality

Hydrogen again

- Relevant references for factorization technique
- Am J Phys 55, 913 (1987)
- Am J Phys 46, 658 (1978)
- Factorization with the aim to go to momentum space!
- Consider

$$
p=\sqrt{\boldsymbol{p} \cdot \boldsymbol{p}}
$$

before $r=\sqrt{r \cdot r}$

$$
r_{p}=\frac{1}{2}\left(\frac{1}{p} \boldsymbol{p} \cdot \boldsymbol{r}+\boldsymbol{r} \cdot \boldsymbol{p} \frac{1}{p}\right)
$$

$$
p_{r}=\frac{1}{2}\left(\frac{1}{r} \boldsymbol{r} \cdot \boldsymbol{p}+\boldsymbol{p} \cdot \boldsymbol{r} \frac{1}{r}\right)
$$

- Hamiltonian $H=\frac{\boldsymbol{p}^{2}}{2 m}-\frac{\hbar^{2}}{m a_{0}} \frac{1}{r}$
- It is also possible to write

$$
\ell^{2}=\boldsymbol{p}^{2}\left(\boldsymbol{r}^{2}-r_{p}^{2}\right) \quad \text { before } \quad \ell^{2}=r^{2}\left(\boldsymbol{p}^{2}-p_{r}^{2}\right)
$$

Detour (artificial)

- Define "funny" operator

$$
\Lambda=r^{2}\left(\boldsymbol{p}^{2}-2 m E\right)^{2}-2 i \hbar \boldsymbol{p} \cdot \boldsymbol{r}\left(\boldsymbol{p}^{2}-2 m E\right)+4 \hbar^{2}\left(\boldsymbol{p}^{2}-2 m E\right)
$$

- When acting on eigenstate of Hamiltonian $H|E \ell m\rangle=E|E \ell m\rangle$ same effect as applying the operator $\quad r^{2}\left(p^{2}-2 m H\right)^{2}$
- Proof requires to show that

$$
\boldsymbol{r}^{2}\left[H, \boldsymbol{p}^{2}\right]=\frac{2 i \hbar^{3}}{m a_{0}}(\boldsymbol{p} \cdot \boldsymbol{r}+2 i \hbar) \frac{1}{r}
$$

- Then it follows immediately that $\quad \Lambda|E \ell m\rangle=\frac{4 \hbar^{4}}{a_{0}^{2}}|E \ell m\rangle$
- Goal is now to factorize the "funny" operator

Development

- Works by defining

$$
P_{\ell}^{ \pm}=r_{p}\left(\boldsymbol{p}^{2}-2 m E\right) \pm i \hbar \frac{\ell+\frac{1}{2} \pm \frac{1}{2}}{p}\left(p^{2}+2 m E\right)
$$

- Use $\ell^{2}=p^{2}\left(r^{2}-r_{p}^{2}\right)$ to replace r^{2} in Λ and use $p \cdot r=r_{p} p-2 i \hbar$
- Inserting and replacing the square of the orbital angular momentum by its eigenvalue, one finds

$$
\Lambda_{\ell}=r_{p}^{2}\left(\boldsymbol{p}^{2}-2 m E\right)^{2}+\frac{\hbar^{2} \ell(\ell+1)}{p^{2}}\left(\boldsymbol{p}^{2}-2 m E\right)^{2}-2 i \hbar r_{p} p\left(\boldsymbol{p}^{2}-2 m E\right)
$$

- Check that $\Lambda_{\ell}=P_{\ell \pm 1}^{\mp} P_{\ell}^{ \pm}-4 \hbar^{2}\left(\ell+\frac{1}{2} \pm \frac{1}{2}\right)^{2} 2 m E$
- Note $\Lambda_{\ell}|E \ell\rangle=\frac{4 \hbar^{4}}{a_{0}^{2}}|E \ell\rangle$
- As before $\Lambda_{\ell \pm 1}\left(P_{\ell}^{ \pm}|E \ell\rangle\right)=\frac{4 \hbar^{4}}{a_{0}^{2}}\left(P_{\ell}^{ \pm}|E \ell\rangle\right)$ implies that the energy doesn't change

$$
P_{\ell}^{ \pm}|E \ell\rangle=p_{E \ell}^{ \pm}|E \ell \pm 1\rangle
$$

More development

- Normalization

$$
\left|p_{E \ell}^{ \pm}\right|^{2}=\frac{4 \hbar^{4}}{a_{0}^{2}}\left[1+\left(\ell+\frac{1}{2} \pm \frac{1}{2}\right)^{2} \frac{2 m a_{0}^{2}}{\hbar^{2}} E\right]
$$

- For bound states factor must break off for

$$
1+\left(\ell_{\max }+1\right)^{2} \frac{2 m a_{0}^{2}}{\hbar^{2}} E=0
$$

- With the usual solutions $E_{n}=-\frac{\hbar^{2}}{2 m a_{0}^{2}} \frac{1}{n^{2}}$ with $n=\ell_{\max }+1$
- Go to momentum representation with $r_{p}=i \hbar\left(\frac{\partial}{\partial p}+\frac{1}{p}\right)$
- apply to $\quad P_{\ell}^{ \pm}|E \ell\rangle=p_{E \ell}^{ \pm}|E \ell \pm 1\rangle$
$\langle p| r_{p}\left(p^{2}-2 m E\right) \pm i \hbar \frac{\ell+\frac{1}{2} \pm \frac{1}{2}}{p}\left(p^{2}+2 m E\right)|n \ell\rangle=\frac{2 \hbar^{2}}{a_{0}} i\left[1-\frac{\left(\ell+\frac{1}{2} \pm \frac{1}{2}\right)^{2}}{n^{2}}\right]^{1 / 2}\langle p \mid n \ell \pm 1\rangle$
- insert E and note phase choice!

Differential equation in momentum space

- Final result

$$
\begin{array}{r}
\left(p^{2}+\frac{\hbar^{2}}{a_{0}^{2} n^{2}}\right) \frac{d}{d p}\langle p \mid n \ell\rangle+\left\{\left[\pm\left(\ell+\frac{1}{2} \pm \frac{1}{2}\right)+3\right] p+\frac{\hbar^{2}}{a_{0}^{2} n^{2}} \frac{1}{p}\left[1 \mp\left(\ell+\frac{1}{2} \pm \frac{1}{2}\right)\right]\right\}\langle p \mid n \ell\rangle= \\
\frac{2 \hbar}{a_{0}}\left[1-\frac{\left(\ell+\frac{1}{2} \pm \frac{1}{2}\right)^{2}}{n^{2}}\right]^{1 / 2}\langle p \mid n \ell \pm 1\rangle
\end{array}
$$

- For $\quad \ell=\ell_{\max }$ use upper result (rhs --> 0)

$$
\left[\left(p^{2}+\frac{\hbar^{2}}{a_{0}^{2} n^{2}}\right) \frac{d}{d p}+(n+3) p+\frac{\hbar^{2}}{a_{0}^{2} n^{2}} \frac{1}{p}(1-n)\right]\langle p \mid n \ell=n-1\rangle=0
$$

- Solution

$$
\langle p \mid n \ell=n-1\rangle=\phi_{n \ell=n-1}(p)=N \frac{p^{n-1}}{\left(p^{2}+\frac{\hbar^{2}}{a_{0}^{2} n^{2}}\right)^{n+1}}
$$

Ground state

- Normalization

$$
|N|^{2}=\frac{2^{4 n+2}(n!)^{2}}{\pi(2 n)!}\left(\frac{\hbar}{a_{0} n}\right)^{2 n+3}
$$

- Other wave functions: use lowering operator
- Ground state wave function

$$
\phi_{10}=4 \sqrt{\frac{2}{\pi}}\left(\frac{\hbar}{a_{0}}\right)^{5 / 2} \frac{1}{\left(p^{2}+\frac{\hbar^{2}}{a_{0}^{2}}\right)^{2}}
$$

Direct knockout reactions

- Atoms: (e,2e) reaction
- Nuclei: (e, e'p) reaction [and others like (p,2p), ($\left.d,{ }^{3} \mathrm{He}\right),(p, d)$, etc.]
- Physics: transfer large amount of momentum and energy to a bound particle; detect ejected particle together with scattered projectile \rightarrow construct spectral function
- Impulse approximation: struck particle is ejected
- Other assumption: final state ~ plane wave on top of N-1 particle eigenstate (more serious in practical experiments) but good approximation if ejectile momentum large enough
- If relative momentum large enough, final state interaction can be neglected as well
- -> PWIA = plane wave impulse approximation
- Cross section proportional to spectral function

(e,2e) data for atoms

- Start with Hydrogen

- Ground state wave function $\quad \phi_{1 s}(\boldsymbol{p})=\frac{2^{3 / 2}}{\pi} \frac{1}{\left(1+p^{2}\right)^{2}}$
- $(e, 2 e)$ removal amplitude

$$
\langle 0| a_{\boldsymbol{p}}|n=1, \ell=0\rangle=\langle\boldsymbol{p} \mid n=1, \ell=0\rangle=\phi_{1 s}(\boldsymbol{p})
$$

Hydrogen 1s wave function "seen" experimentally Phys. Lett. 86A, 139 (1981)

