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Wave functions
• Shells 
• Orthogonality
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Hydrogen again
• Relevant references for factorization technique 

– Am J Phys 55, 913 (1987) 

– Am J Phys 46, 658 (1978) 

• Factorization with the aim to go to momentum space! 
• Consider                                         before 
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• It is also possible to write 
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Detour (artificial)
• Define “funny” operator 

• When acting on eigenstate of Hamiltonian 
same effect as applying the operator 

• Proof requires to show that 

• Then it follows immediately that 

• Goal is now to factorize the “funny” operator
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Development
• Works by defining 

• Use                            to replace     in      and use 

• Inserting and replacing the square of the orbital angular 
momentum by its eigenvalue, one finds 

• Check that 

• Note 

• As before                                                    implies that the 
energy doesn’t change
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More development
• Normalization 

• For bound states factor must break off for 

• With the usual solutions                              with 

• Go to momentum representation with 

• apply to 

•  insert          and note phase choice!
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Differential equation in momentum space
• Final result 

• For                    use upper result (rhs --> 0) 

• Solution 
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Ground state
• Normalization 

• Other wave functions: use lowering operator 
• Ground state wave function
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Direct knockout reactions
• Atoms: (e,2e) reaction 

• Nuclei: (e,e’p) reaction [and others like (p,2p), (d,3He), (p,d), etc.] 

• Physics: transfer large amount of momentum and energy to a 
bound particle; detect ejected particle together with scattered 
projectile → construct spectral function 

• Impulse approximation: struck particle is ejected 

• Other assumption: final state ~ plane wave on top of N-1 particle 
eigenstate (more serious in practical experiments) but good 
approximation if ejectile momentum large enough 

• If relative momentum large enough, final state interaction can be 
neglected as well 

• -> PWIA = plane wave impulse approximation 
• Cross section proportional to spectral function
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(e,2e) data for atoms
• Start with Hydrogen 
• Ground state wave function 

• (e,2e) removal amplitude
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Hydrogen 1s wave function 
“seen” experimentally 
Phys. Lett. 86A, 139 (1981)


