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 Connection with neutron stars, very briefly...
 Hints from experimental data 
 What is different in the medium…
 Cooper problem
 Gap equation and BCS for nuclear and neutron matter
 Spectroscopic factors in nuclei --> consequences
 Inclusion of realistic nucleon propagators
 Results
 Brief comparison with other many-body calculations
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Pairing in neutron stars...
• 1959 Migdal suggests pairing in neutron stars 

before they are even observed...

• 1969 Vela and Crab pulsars exhibit sudden spin-ups 
(glitches)

• Relaxation to constant rate of slowing down too 
slow to be explained in terms of viscous processes 
of normal matter --> glitches --> superfluidity 
(Pines)

• Critical information: pairing gap as a function of 
temperature

• BCS yields--------------------------------------------->

• Lots and lots of BCS calculations of neutron matter

• Also calculations of pairing in symmetric matter --> 
puzzle
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Lots of things to consider

Dany Page UNAM
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Reminder
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NN interaction and phase shifts for T=1
• L+S+T --> odd  (Pauli)
• T=1 --> L+S even

• Attraction: positive phase shift

• --> low density 1S0 dominates with 3P2 possibly at higher density
Review: e.g. Dean & Hjorth-Jensen, Rev.Mod.Phys.75, 607 (2003)
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Low-density --> phase shifts almost enough
• BCS solution
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Pairing in nuclei: like nucleons (but angular momentum)
• “Possible Analogy between the Excitation Spectra of Nuclei and Those of the Superconducting Metallic State”, Bohr, Mottelson, 

Pines, 1958 Phys. Rev. 110, 936
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Semi-empirical mass formula
• Pairing contribution

∆ =
12

A1/2

8



Pairing N*

Appearance of bound-pair states 
• Reminder of appearance of bound states for free particles
• Write eigenvalue equation in wave vector space

• Two electrons or two 3He atoms with spin ½  have antisymmetry 
requirement            even

• For            spin

• For            spin                 and so on
• In this basis

• Visualize appearance of bound state

ψn(k;mαmα�) =
1

En − �2k2/m

1
2

�

mγmγ�

�
d3q

(2π)3
�kmαmα� | V |qmγmγ��ψn(q;mγmγ�)

� + S

� = 0 S = 0

S = 1� = 1
ψn(k; �S) =

1
En − �2k2/m

1
2

�
dq q2

(2π)3
�k| V �S |q�ψn(q; �S)
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In the medium --> Cooper problem
• Two particles on top of the Fermi sea 
• Most favorable total wave vector zero

• Similar to free space

• Eigenvalue equation

• Subscript C for Cooper

• Use separable interaction to illustrate properties

G(0)
pp (K = 0, q;E) =

θ(q − kF )
E − 2ε(q) + iη

ψC(k; �S) =
θ(k − kF )

EC − 2ε(k)
1
2

�
dq q2

(2π)3
�k| V �S |q�ψC(q; �S)
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Cooper problem
• Interaction
• S implied

• Substitute -------------------->

• with

• Amplitude substituted in eigenvalue equation yields

• Right side negative definite for energy below pp continuum, 
diverging to -∞ when approaching this limit

• So always solution for attractive interaction! 

• None for repulsive interaction

• Peculiarity: bound state resides in hh continuum...

�k| V �S |q� = λ�w�(k)w∗
� (q)

ψC(k; �S) = N θ(k − kF )w�(k)
EC − 2ε(k)

N =
1
2
λ�

�
dq q2

(2π)3
w∗

� (q)ψC(q; �S)

1
λ�

=
1
2

�
dq q2

(2π)3
θ(q − kF )|w�(q)|2

EC − 2ε(q)
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Inclusion of hh propagation
• Attempt to include hh propagation in eigenvalue equation

• Visualize unperturbed spectrum

• No “room” for bound states
• Either pp or hh

• Not possible to have discrete (real) eigenvalues for an attractive 
interaction

• Instead yields complex eigenvalues signaling instability of 
starting point (pairing instability)

ψC(k; �S) =
θ(k − kF )

EC − 2ε(k)
1
2

�
dq q2

(2π)3
�k| V �S |q�ψC(q; �S)

− θ(kF − k)
EC − 2ε(k)

1
2

�
dq q2

(2π)3
�k| V �S |q�ψC(q; �S)
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Bound-pair states
• Consider original propagator equation
• Cannot legitimately eliminate noninteracting propagator

• Unless there is a GAP in the sp spectrum at kF

• Add auxiliary sp potential with a constant shift Δ below kF

• Implies gap of 2Δ between pp and hh continuum

• Now a legitimate eigenvalue problem can be obtained
• Use separable interaction to get transition amplitudes

• and eigenvalue problem
ψBP (k; �S) = N θ(k − kF )w�(k)

EBP − 2ε(k)
ψBP (k; �S) = −N θ(kF − k)w�(k)

EBP − 2ε(k)

1
λ�

=
1
2

�
dq q2

(2π)3
θ(q − kF )|w�(q)|2

EBP − 2ε(q)
− 1

2

�
dq q2

(2π)3
θ(kF − q)|w�(q)|2

EBP − 2ε(q)
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Graphical illustration
• Plot right side of

• as a function of EBP between pp and hh 
continuum

• Both terms yield negative contributions 
diverging near respective boundaries

• Only solutions for attraction  indicated 
for one choice by horizontal dashed line

• Even true for very small coupling constant

• Stronger attraction -> complex eigenvalues

1
λ�

=
1
2

�
dq q2

(2π)3
θ(q − kF )|w�(q)|2

EBP − 2ε(q)
− 1

2

�
dq q2

(2π)3
θ(kF − q)|w�(q)|2

EBP − 2ε(q)

Can always get real eigenvalues by increasing gap!
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Bound-pair states in nuclear matter N=Z
• Free space interaction 

generates deuteron bound state
• Scattering phase shifts 

indicate strong attraction in 
the medium

• Relevant eigenvalue problem 
(with gap in sp spectrum)

• Gap required to avoid pairing 
instability sensitive function of 
density both for 3S1-3D1 and 1S0 

ψBP (k; (�S)JT ) =
θ(k − kF )

EBS − 2ε(k)
1
2

�

��

�
dq q2

(2π)3
�k�| V JST |q���ψBP (q; (��S)JT )

− θ(kF − k)
EBS − 2ε(k)

1
2

�

��

�
dq q2

(2π)3
�k�| V JST |q���ψC(q; (��S)JT )

Note zero density limit
deuteron channel
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Bound-pair eigenvalues
• Gap required to high density

• Deuteron attraction greater 
than 1S0

• Maximum sp gap ~ 15 MeV at 
kF=1.2fm-1

• Keep this gap for all densities 
to study eigenvalues

• Similarly for 1S0 (>  3MeV gap)

• Also Cooper eigenvalue

• BCS approximately matches 
these results --> include gap 
in spectrum self-consistently 
--> gap equation
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Phase space and Pauli principle
• Introduces total wave vector 

dependence illustrated in figure
• a) total wave vector < 2kF

• b) >2kF

• Constraint by step functions

• Outside both spheres: pp

• Inside both: hh
• Most phase space for |K|=0

• Extremely relevant for possible bound 
states...
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Other systems
• Superconductivity in metals

– resistance to electric current drops below critical temperature

– current in superconducting ring persists without dissipation

– 1911 discovery --> 1957 explanation

– problem: convert repulsive Coulomb --> attractive interaction

– isotope effect (critical T depends of mass of ions) --> electron-phonon interaction 
important

– e-e interaction through exchange of lattice vibrations

– Fröhlich interaction

• phonon spectrum; electron-phonon coupling; energy transfer; Debye frequency (maximal 
allowed in discrete lattice)

• attractive for                                 can overcome screened Coulomb but only in a domain 
of ~10-2 eV around Fermi energy

• gaps tiny (example static approximation) ~10-4 eV

(p1p2| V (E) |p3p4) = δp1+p2,p3+p4

1
V

γ2
Ω2

Q

E2 − Ω2
Q

θ(ΩD − ΩQ)

|E| < ΩQ < ΩD
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Superfluidity in 3He
• Transition below 3mK
• Pair state with L=1 and S=1

• Anisotropic superfluid (in metals S=0 isotropic)

• BCS with free NN interaction for neutrons
• low density 1S0 pairing perhaps 3P2-3F2 at higher density

• also 1S0 proton superconductivity (beta-equilibrium)

Neutron stars
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Some pairing issues in infinite matter

• Gap size in nuclear matter & neutron matter

• Density & temperature range of superfluidity

• Resolution of 3S1-3D1 puzzle (size of pn pairing gap)

• Influence of short-range correlations (SRC)

• Influence of polarization contributions

• Relation of infinite matter results & finite nuclei

Review: e.g. Dean & Hjorth-Jensen, RMP75, 607 (2003)
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Results from:
H. Müther and WHD
Pairing properties of nucleonic matter employing dressed nucleons.
Phys. Rev. C72, 054313 (2005)
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Puzzle related to gap size in 3S1-3D1 channel

Mean-field particles

Early nineties: BCS gaps ~ 10 MeV

Alm et al. Z.Phys.A337,355 (1990)
Vonderfecht et al. PLB253,1 (1991)
Baldo et al. PLB283, 8 (1992)

Dressing nucleons is expected to
reduce pairing strength as suggested 
by in-medium scattering

21



Pairing N*

Removal probability for 
valence protons

from
NIKHEF data

L. Lapikás, Nucl. Phys. A553,297c (1993)

Weak probe but propagation in the 
nucleus of removed proton 

using standard optical 
potentials to generate 

distorted waves --> associated 
uncertainty ~ 5-10%

Why: details of the interior 
scattering wave function 

uncertain since non-locality is 
not constrained (so far)

S ≈ 0.65 for valence protons
Reduction ⇒ both SRC and LRC

(e,e’p)
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Results from Nuclear Matter (N=Z)
2nd generation (2000)

Momentum distribution: only minor changes 
when self-consistency is included 

Occupation in nuclei: Depleted similarly!

Thesis Libby Roth Stoddard (2000) 23
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Green´s function and Γ-matrix approach (ladders)
Single-particle Green´s function

Dyson equation: 

Self-energy                     , Γ-matrix

� 

G(k, t1,t2) = −i T ck (t1)ck
+(t2)

= + Σ

Σ
� 

G(k,ω) = 1
ω − k 2 /2m − Σ(k,ω)

⇒ S(k,ω) = − 2ImG(k,ω)

= Γ Γ= +Γ

• Pairing instability possible

• Finite temperature calculation can avoid this

� 

G(k,ω) = G(0)(k,ω) + G(0)(k,ω)Σ(k,ω)G(k,ω)
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Self-energy

� 

G(k,ω) = 1
ω − k 2 /2m − Σ(k,ω)

⇒ S(k,ω) = − 2ImG(k,ω)

Real and imaginary part of 
the retarded self-energy

• kF = 1.35 fm-1 

• T = 5 MeV

• k = 1.14 fm-1

Note differences due 
to NN interaction
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Spectral functions

•Strength above and below the   
Fermi energy as in BCS

• But broad distribution in energy

• BCS not just a cartoon of SCGF 
but both features must be 
considered in a consistent way

• CDBonn interaction at “T=0“
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BCS: a reminder
NN correlations on top of Hartree-Fock: 

Bogoliubov transformation

with

Gap equation                             Spectral function S(k,ω)

� 

uk
2

vk
2 = 1

2
1± εk − µ

(εk − µ)2 + Δ(k)2
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
, E(k) = (εk − µ)2 + Δ(k)2

 −Ε                ε      µ                             Ε                       ω
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Solution of the gap equation

� 

E(k) = (εk − µ)2 + Δ(k)2with and  ω=0

Define:

Eigenvalue problem for a pair 
of nucleons at ω=0

Steps of the calculation:

Assume Δ(k) and determine E(k)

Solve eigenvalue equation and evaluate new Δ(k)

•If lowest eigenvalue ω<0 enhance Δ(k) (resp. δ(k))

•If lowest eigenvalue ω>0 reduce Δ(k)

Repeat until convergence 28
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Gaps from BCS for realistic interactions

Nuclear matter
3S1-3D1

Neutron matter
1S0

• momentum dependence Δ(k)

• different NN interactions

• very similar to pairing gaps in 
finite nuclei for like particles...!? 

• for np pairing no strong empirical 
evidence...?!

Early nineties: BCS gaps ~ 10 MeV

Alm et al. Z.Phys.A337,355 (1990)
Vonderfecht et al. PLB253,1 (1991)
Baldo et al. PLB283, 8 (1992)

T = 0
Mean-field particles
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Beyond BCS in the framework of SCGF
Generalized Green‘s functions:      Extend

Anomalous propagators
� 

G(k, t1,t2) = −i T ck (t1)ck
+(t2)

� 

G(k, t1,t2) =
−i T cc+ −i Tcc
i Tc+c + i Tc+c

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ =

G F
F + G
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Generalized Dyson equation:    Gorkov equations

� 

ω − tk − Σ(k,ω) −Δ(k,ω)
−Δ+(k,ω) ω + tk + Σ(k,ω)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
Gpair (k,ω) F(k,ω)
F +(k,ω) Gpair (k,ω)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

1 0
0 1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Leads to e.g.
= - Δ

Gpair     =    G         -       G         Δ        F

= Δ

G includes all normal 
self-energy terms
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Anomalous self-energy: Δ & generalized Gap equation

     
Fermi function

If we replace S(k,ω) by “HF“ approx. and Spair(k,ω) by BCS:        
    Usual Gap equation

If we take Spair(k,ω) =S(k,ω) :   

   Corresponds to the homogeneous solution of Γ-matrix eq. 
With Spair (k,ω) :  

     The above and self-consistency

Δ = = Δ

� 

Δ(k) = ′ k 2∫ d ′ k k V ′ k dω∫ d ′ ω 
1− f ω( ) − f ′ ω ( )

−ω − ′ ω 
S( ′ k ,ω)Spair ( ′ k , ′ ω )∫ Δ( ′ k )

� 

f (ω) = 1
eβω +1
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Consistency of Gap equation (anomalous 
self-energy) and Ladder diagrams

Iteration of Gorkov equations for anomalous
propagator generates   

… and all other ladder diagrams at 
total momentum and energy zero (w.r.t. 2µ) 
plus anomalous self-energy terms in normal part of propagator

So truly consistent with inclusion of ladder diagrams at other total
momenta and energies

+ …
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Features of generalized gap equation

� 

Δ(k) = ′ k 2∫ d ′ k k V ′ k dω∫ d ′ ω 
1− f ω( ) − f ′ ω ( )

−ω − ′ ω 
S( ′ k ,ω)Spair ( ′ k , ′ ω )∫ Δ( ′ k )

� 

− 1
2 ˜ χ k '

Dashed: 
Spectral strength only at 1 energy
Dashed-dot:
Effect of temperature (5 MeV)
Solid:
Includes complete strength 
distribution due to SRC

Related studies by 
Baldo, Lombardo, Schuck et al.
use BHF self-energy 

� 

˜ χ k
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CDBonn yields stronger pairing than ArV18
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Proton-neutron pairing in symmetric nuclear matter
3S1-3D1

  
Using CDBonn

Dashed lines: 
quasiparticle poles

Solid lines:          
dressed nucleons

No pairing at saturation 
density!!!!
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Pairing and spectral functions
Spectral functions

S(k,ω)  dashed = A(k,ω)

Spair(k,ω) solid = AS(k, ω)

ρ = 0.08 fm-3

T = 0.5 MeV

k = 193 MeV/c    0.9 kF

Expected effect
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Pairing in neutron matter --> 1S0

Dressing effects weaker, 
but non-negligibleCDBonn
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Possible effect of polarization 
(higher-order corrections to interaction)

• However...
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Comparison for neutron matter
with CBF & Monte Carlo PRL95,192501(2005)

⇒ SCGF
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Relevant for high density
• 3P2-3F2
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