CISS07 8/30/2007

Comprehensive treatment of correlations at different energy scales in nuclei using Green's functions

Lecture 1: 8/28/07	Propagator description of single-particle motion and the link with experimental data
Lecture 2: 8/29/07	From Hartree-Fock to spectroscopic factors < 1: inclusion of long-range correlations
Lecture 3: 8/29/07	Role of short-range and tensor correlations associated with realistic interactions
Lecture 4: 8/30/07	Dispersive optical model and predictions for nuclei towards the dripline
Adv. Lecture 1: 8/30/07	Saturation problem of nuclear matter
	& pairing in nuclear and neutron matter
Adv. Lecture 2: 8/31/07	Quasi-particle density functional theory

Wim Dickhoff Washington University in St. Louis

The two "most elusive" numbers in nuclear physics

- What are these numbers?
- In what sense are they elusive?
- What is the history?
- Three-body forces? Relativity? Give up?
- What has been learned from (e,e'p)?
- What really decides the saturation density?
- Nuclear Matter with SRC? No LRC?
- Conclusions
- Pairing ...

Empirical Mass Formula

Global representation of nuclear masses (Bohr & Mottelson)

$$B = b_{vol}A - b_{surf}A^{2/3} - \frac{1}{2}b_{sym}\frac{(N-Z)^2}{A} - \frac{3}{5}\frac{Z^2e^2}{R_c}$$

- Volume term
- Surface term
- Symmetry energy
- Coulomb energy

- b_{vol} = 15.56 MeV b_{surf} = 17.23 MeV
- $b_{sym} = 46.57 \text{ MeV}$
- R_c = 1.24 $A^{1/3}$ fm
- Pairing term must also be considered

Empirical Mass Formula

Plotted: most stable nucleus for a given A

Central density of nuclei

Multiply charge density at the origin by A/Z \Rightarrow Empirical density = 0.16 nucleons / fm³ \Rightarrow Equivalent to $k_{\rm F}$ = 1.33 fm⁻¹

Nuclear Matter

N = Z

No Coulomb

A $\Rightarrow \infty$, V $\Rightarrow \infty$ but A/V = ρ fixed

"Two most important numbers"

 b_{vol} = 15.56 MeV and $k_{\rm F}$ = 1.33 fm⁻¹

Historical Perspective

- First attempt using scattering in the medium
- Formal development (linked cluster expansion)
- Low-density expansion
- Reorganized perturbation expansion (60s) involving ordering in the number of hole lines
- Variational Theory vs. Lowest Order \mathscr{BBG} (70s)
- Variational results & next hole-line terms (80s)
- Three-body forces? Relativity? (80s)
- Confirmation of three hole-line results (90s)
- New insights from experiment about what nucleons are up to in the nucleus (90s & 00s)

Brueckner 1954 Goldstone 1956 Galítskíi 1958 Bethe & students BBG-expansion Clark, Pandharípande Day, Wírínga Urbana, CUNY Baldo et al. NIKHEF Amsterdam JLab

Old pain and suffering!

Figure adapted from Marcello Baldo (Catania)

Lowest-order Brueckner theory (two hole lines)

 G^{f}_{BG} angle-average of $\Gamma_{pphh} = \bullet \dots \bullet + \frac{1}{2}$ $G_{BG}^{f}(k_{1},k_{2};E) = \frac{\theta(k_{1}-k_{F})\theta(k_{2}-k_{F})}{E-\varepsilon(k_{1})-\varepsilon(k_{2})+i\eta}$ $\langle k\ell | G^{JST}(K,E) | k'\ell' \rangle = \langle k\ell | V^{JST} | k'\ell' \rangle + \frac{1}{2} \sum_{\ell \parallel} \int_{0}^{\infty} \frac{dq}{(2\pi)^3} q^2 \langle k\ell | V^{JST} | q\ell'' \rangle G^f_{BG}(q;K,E) \langle q\ell'' | G^{JST}(K,E) | k'\ell' \rangle$ Spectrum $\varepsilon_{BHF}(k) = \frac{\hbar^2 k^2}{2m} + \Sigma_{BHF}(k;\varepsilon_{BHF}(k))$ $k < k_F \Rightarrow \text{standard choice}$ all $k \Rightarrow \text{continuous choice}$ $\Sigma_{BHF}(k;E) = \frac{1}{v} \sum_{m=m'} \int \frac{d^3k'}{(2\pi)^3} \theta(k_F - k') \left\langle \vec{k}\vec{k}'mm' \left| G\left(\vec{k} + \vec{k}';E + \varepsilon_{BHF}(k')\right) \right| \vec{k}\vec{k}'mm' \right\rangle$ Self-energy Energy $\frac{E}{A} = \frac{4}{\Omega} \int \frac{d^3k}{(2\pi)^3} \theta(k_F - k) \frac{\hbar^2 k^2}{2m}$ $+\frac{1}{2\rho}\sum_{k}\int \frac{d^{3}k}{(2\pi)^{3}}\theta(k_{F}-k)\int \frac{d^{3}k'}{(2\pi)^{3}}\theta(k_{F}-k')\left\langle \vec{k}\vec{k}'mm'\right|G\left(\vec{k}+\vec{k}';\boldsymbol{\varepsilon}_{BHF}\left(k\right)+\boldsymbol{\varepsilon}_{BHF}\left(k'\right)\right)\left|\vec{k}\vec{k}'mm'\right\rangle$

M. van Batenburg (thesis, 2001) & L. Lapikás from ²⁰⁸Pb (e,e´p) ²⁰⁷Tl

Occupation of deeply-bound proton levels from EXPERIMENT

What are the rest of the protons doing?

Jlab E97-006 Phys. Rev. Lett. 93, 182501 (2004) D. Rohe et al.

- Location of high-momentum components
- Integrated strength agrees with theoretical prediction Phys. Rev. C49, R17 (1994) \Rightarrow 0.6 protons for ^{12}C

<u>Where are the last</u> protons? Answer is coming!

Energy Sum Rule (Migdal, Galitskii, Koltun ...)

Finite nuclei

$$E_0^A = \left\langle \Psi_0^A \left| \hat{H} \right| \Psi_0^A \right\rangle = \frac{1}{2} \sum_{\alpha\beta} \left\langle \alpha \left| T \right| \beta \right\rangle n_{\alpha\beta} + \frac{1}{2} \sum_{\alpha} \int_{-\infty}^{\varepsilon_F} dE \ ES_h(\alpha; E)$$

$$n_{\alpha\beta} = \left\langle \Psi_0^A \left| a_{\alpha}^+ a_{\beta} \right| \Psi_0^A \right\rangle = \frac{1}{\pi} \int_{-\infty}^{\varepsilon_{R}^-} dE \operatorname{Im} G(\beta, \alpha; E)$$

$$S_{h}(\alpha; E) = \sum_{n} \left| \left\langle \Psi_{n}^{A-1} \middle| a_{\alpha} \middle| \Psi_{0}^{A} \right\rangle \right|^{2} \delta \left(E - \left(E_{0}^{A} - E_{n}^{A-1} \right) \right) = \frac{1}{\pi} \operatorname{Im} G(\alpha, \alpha; E)$$

Nuclear matter
$$\frac{E}{A} = \frac{1}{2} \left\{ \frac{4}{\rho} \int \frac{d^{3}k}{\left(2\pi\right)^{3}} \int_{-\infty}^{\varepsilon_{h}} dE \left(\frac{\hbar^{2}k^{2}}{2m} + E \right) S_{h}(k; E) \right\}$$

- Presumes only two-body interactions!
- Correct description of experimental spectral function should yield good E/A!!

Where does binding come from (really)?

		"BHF"	I		Total		¹⁶ O P
lj	ϵ	t	ΔE	ϵ	t	ΔE	
$s_{\frac{1}{2}}$ qh	-36.9	11.8	-50.3	-34.3	11.2	-36.0	-
$S\frac{1}{2}$ C				-90.4	17.1	-22.9	←──
$p_{\frac{3}{2}}$ qh	-15.4	17.6	9.1	-17.9	18.1	0.4	
$p_{\frac{3}{2}}$ c $n_{\frac{1}{2}}$ ah	-11.5	16.6	10.3	-95.2 -14.1	$\frac{35.2}{17.2}$	-10.0 5.5	
$p_{\frac{1}{2}}$ c	11.0	10.0	10.0	-103.6	35.9	-5.8	←──
$\ell > 1 c$				-98.9	63.2	-12.3	◀───
							-
$E/A({\rm MeV})$		-1.9			-5.1		
$\langle r \rangle$ (fm)		2.59			2.55		
							_

¹⁶**O** PRC51,3040(1995)

Quasiholes contribute 37% to the total energy High-momentum nucleons (continuum) contribute 63% but represent <u>only</u> about 10% of the particles!!

Saturation density and SRC

- Saturation density related to nuclear charge density at the origin. Data for ${}^{208}Pb \Rightarrow A/Z * \rho_{ch}(0) = 0.16 \ fm^{-3}$
- Charge at the origin determined by protons in s states
- Occupation of 0s and 1s totally dominated by SRC as can be concluded from recent analysis of ²⁰⁸Pb(e,e'p) data and theoretical calculations of occupation numbers in nuclei and nuclear matter.
- Depletion of 2s proton also dominated by SRC: 15% of the total depletion of 25% ($n_{2s} = 0.75$)

٠

Conclusion: Nuclear saturation dominated by SR(and therefore high-momentum components

Elastic electron scattering from ²⁰⁸Pb

B. Frois *et al.* Phys. Rev. Lett. **38**, 152 (1977)

Results from Nuclear Matter 2nd generation (2000)

- Spectral functions for *k* = 0, 1.36, & 2.1 fm⁻¹
- Common tails on both sides of $\epsilon_{\rm F}$

Self-consistent spectral functions

Saturation with self-consistent spectral functions in nuclear matter \Rightarrow reasonable saturation properties

Contribution to the energy per particle before integration over the single-particle momentum at high momentum for two densities Green's function V 19

Saturation of Nuclear Matter Ladders and self-consistency for Nuclear Matter

Phys. Rev. Lett. 90, 152501 (2003)

Self-consistent spectral functions

- Distribution below $\epsilon_{\rm F}$ broadens for high momenta and develops a common tail at high missing energy
- Slight increase in occupation k < k_F to 85% at k_F = 1.36 fm⁻¹ compared to Phys. Rev. C44, R1265 (1991) & Nucl. Phys. A555, 1 (1993)
- Self-consistent treatment of Pauli principle
- Interaction between dressed particles weaker (reduced cross sections for both pn and nn)
- Pairing instabilities disappear in all channels
- Saturation with lower density than before and reasonable binding
- Contribution of long-range correlations excluded

Self-consistent Green's functions and the energy of the ground state of the electron gas

GW approximation

- G self-consistent sp propagatorW screened Coulomb interaction
 - - \Rightarrow RPA with dressed sp propagators

Electron gas : -XC energies (Hartrees)

<u>Method</u>	r _s = 1	r _s =2	r _s =4	r _s =5	r _s =10	r _s =20	Reference
QMC	0.5180	0.2742	0.1464	0.1197	0.0644	0.0344	CA80
	0.5144	0.2729	0.1474	0.1199	0.0641	0.0344	OB94;OHB99
GW	0.5160	0.2727	0.1450	0.1185	0.0620	0.032	<i>GG</i> 01
		0.2741	0.1465				HB98
RPA	0.5370	0.2909	0.1613	0.1340	0.0764	0.0543	

What about long-range correlations in nuclear matter?

- Collective excitations in nuclei very different from those in nuclear matter
- Long-range correlations normally associated with small q
- Contribution to the energy like $dq q^2 \Rightarrow$ very small (except for e-gas)
- Contributions of collective excitations to the binding energy of nuclear matter dominated by pion-exchange induced excitations?!?

Inclusion "3N-" a	of ∆-isobars a nd "4N-force"	S (a)	Ь)	c)
Nucl. Phys. A3	89, 492 (1982)			
k _F [fm ⁻¹] third order	1.0	1.2	²⁾ 1.4	1.6
a)	-0.303	-1.269	-3.019	-5.384
b)	-0.654	-1.506	-2.932	-5.038
c)	-0.047	-0.164	-0.484	-1.175
d)	0.033	0.095	0.220	0.447
e)	-0.104	-0.264	-0.589	-1.187
f)	0.041	0.137	0.385	0.962
Sum	-1.034	-2.971	-6.419	-11.375

Г

Inclusion of Δ -isobars as 3N- and 4N-force

2N,3N, and 4N from B.D.Day, PRC24,1203(81)

Rings with Δ -isobars :

Nucl. Phys. A389, 492 (1982)

PPNPhys 12, 529 (1983)

\Rightarrow No sensible convergence with Δ -isobars

Nuclear Saturation without π -collectivity

- Variational calculations treat LRC (on average) and SRC simultaneously (Parquet equivalence) so difficult to separate LRC and SRC
- Remove 3-body ring diagram from Catania hole-line expansion calculation \Rightarrow about the correct saturation density
- Hole-line expansion doesn't treat Pauli principle very well
- Present results improve treatment of Pauli principle by selfconsistency of spectral functions => more reasonable saturation density and binding energy acceptable
- Neutron matter: pionic contributions must be included (Δ)

Pion collectivity: nuclei vs. nuclear matter

- Pion collectivity leads to pion condensation at higher density in nuclear matter (including Δ -isobars) => Migdal ...
- No such collectivity observed in nuclei

 LAMPF / Osaka data
 Sakai/Wakasa group may disagree
- Momentum conservation in nuclear matter dramatically favors amplification of π-exhange interaction at fixed q
- In nuclei the same interaction is sampled over all momenta Phys. Lett. **B146**, 1(1984)

$$V_{\pi}(q) = -\frac{f_{\pi}^2}{m_{\pi}^2} \frac{q^2}{m_{\pi}^2 + q^2}$$

Needs further study

\Rightarrow Exclude collective pionic contributions to nuclear matter binding energy

Two Nuclear Matter Problems

The usual one

- With π -collectivity and only nucleons
- Variational + CBF and three hole-line results presumed OK (for E/A) but not directly relevant for comparison with nuclei!
- NOT OK if Δ -isobars are included
- Relevant for neutron matter

The relevant one?!

- Without π -collectivity
- Treat only SRC
- But at a sophisticated level by using self-consistency
- Confirmation from Ghent results ⇒ Phys. Rev. Lett.
 90, 152501 (2003)
- 3N-forces difficult $\Rightarrow \pi \dots$
- Relativity?

Comments

- Saturation depends on NNσcoupling in medium but underlying correlated twopion exchange behaves differently in medium
- m^{*} → 0 with increasing p opposite in liquid ³He appears unphysical
- Dirac sea under control?
- sp strength overestimated too many nucleons for k<k_F

Three-body forces

- Microscopic models yield only attraction in matter and more so with increasing ρ
- Microscopic background of phenomenological repulsion in 3Nforce (if it exists)?
- + 4N-, etc. forces yield increasing attraction with ρ
- Needed in light nuclei and attractive!
- Mediated by π -exchange
- Argonne group can't get nuclear matter right with new 3N-force

Conclusions

- Good understanding of role of short-range correlations
 - Depletion of Fermi sea: nuclear matter OK for nuclei
 - Confirmed by experiment
 - High-momentum components
 - # of protons experimentally confirmed (Long-range correlations crucial for distribution of sp strength)
- Energy per particle from self-consistent Green's functions
- Better understanding of nuclear matter saturation \Rightarrow SRC dominate (don't treat LRC from pions)
- We know what protons are up to in stable closed-shell nuclei!!

New stochastic results for ArV8' Gandolfi et al., Phys. Rev. Lett. 98, 102593 (2007)

Green's function V 31

Some pairing issues in infinite matter

- Gap size in nuclear matter & neutron matter
- Density & temperature range of superfluidity
- Resolution of ${}^{3}S_{1}-{}^{3}D_{1}$ puzzle (size of pn pairing gap)
- Influence of short-range correlations (SRC)
- Influence of polarization contributions
- Relation of infinite matter results & finite nuclei

Review: e.g. Dean & Hjorth-Jensen, RMP75, 607 (2003)

Puzzle related to gap size in ${}^{3}S_{1}$ - ${}^{3}D_{1}$ channel

Mean-field particles

Early nineties: BCS gaps ~ 10 MeV

Alm et al. Z.Phys.A337,355 (1990) Vonderfecht et al. PLB253,1 (1991) Baldo et al. PLB283, 8 (1992)

Dressing nucleons is expected to reduce pairing strength as suggested by in-medium scattering

Results from Nuclear Matter (N=Z) 2nd generation (2000)

Momentum distribution: only minor changes when self-consistency is included

Occupation in nuclei: Depleted similarly!

Thesis Libby Roth Stoddard (2000)

Green's function and Γ -matrix approach (ladders) Single-particle Green's function Dyson equation:

$$G(k,\omega) = G^{(0)}(k,\omega) + G^{(0)}(k,\omega)\Sigma(k,\omega)G(k,\omega)$$

$$G(k,\omega) = \frac{1}{\omega - k^2/2m - \Sigma(k,\omega)} \implies S(k,\omega) = -2\operatorname{Im}G(k,\omega)$$
Self-energy
$$\Sigma = \bigcap_{k \in \mathbb{Z}} \int_{k \in \mathbb{Z}} \Gamma \int_{k \in \mathbb{Z}}$$

Pairing instability possible
Finite temperature calculation can avoid this

Self-energy

$$G(k,\omega) = \frac{1}{\omega - k^2/2m - \Sigma(k,\omega)}$$

 \Rightarrow $S(k,\omega) = -2 \operatorname{Im} G(k,\omega)$

Real and imaginary part of the retarded self-energy

- $k_{F} = 1.35 \text{ fm}^{-1}$
- \cdot T = 5 MeV
- k = 1.14 fm⁻¹

Note differences due to NN interaction

Spectral functions

- •Strength above and below the Fermi energy as in BCS
- But broad distribution in energy
- BCS not just a cartoon of SCGF but both features must be considered in a consistent way
- CDBonn interaction at "T=0"

BCS: a reminder

NN correlations on top of Hartree-Fock: $\mathcal{E}_{k}, \quad \mathcal{C}_{k}^{+}$ Bogoliubov transformation $a_{k}^{+} = u_{k}c_{k}^{+} + v_{k}c_{\overline{k}}$ with $u_{k}^{2} = \frac{1}{2}\left[1 \pm \frac{\varepsilon_{k} - \mu}{\sqrt{(\varepsilon_{k} - \mu)^{2} + \Delta(k)^{2}}}\right], \quad E(k) = \sqrt{(\varepsilon_{k} - \mu)^{2} + \Delta(k)^{2}}$ Gap equation Spectral function S(k, ω)

Solution of the gap equation

$$\Delta(k) = \sum_{k'} \langle k, \overline{k} | V | k', \overline{k'} \rangle \frac{\Delta(k')}{\omega - 2E(k)} \quad \text{with} \quad E(k) = \sqrt{(\varepsilon_k - \mu)^2 + \Delta(k)^2} \quad \text{and} \quad \omega = 0$$

Define:
$$\delta(k) = \frac{\Delta(k)}{\omega - 2E(k)}$$

$$\begin{pmatrix} 2E(k) + \langle k | V | k \rangle, & \dots, & \langle k | V | k' \rangle \\ \vdots & , \ddots & , & \vdots \\ \langle k' | V | k \rangle & , \cdots & , 2E(k') + \langle k' | V | k' \rangle \end{pmatrix} \begin{pmatrix} \delta(k) \\ \vdots \\ \delta(k') \end{pmatrix} = \omega \begin{pmatrix} \delta(k) \\ \vdots \\ \delta(k') \end{pmatrix}$$

Eigenvalue problem for a pair of nucleons at $\omega=0$

Steps of the calculation:

 \succ Assume $\Delta(k)$ and determine E(k)

 \succ Solve eigenvalue equation and evaluate new $\Delta(k)$

•If lowest eigenvalue ω <0 enhance $\Delta(k)$ (resp. $\delta(k)$)

•If lowest eigenvalue ω >0 reduce $\Delta(k)$

>Repeat until convergence

Gaps from BCS for realistic interactions

T = 0 Mean-field particles

- momentum dependence $\Delta(k)$
- different NN interactions
- very similar to pairing gaps in finite nuclei for like particles...!?

 for np pairing no strong empirical evidence...?!

Early nineties: BCS gaps ~ 10 MeV

Alm et al. Z.Phys.A337,355 (1990) Vonderfecht et al. PLB253,1 (1991) Baldo et al. PLB283, 8 (1992)

Beyond BCS in the framework of SCGF

Generalized Green's functions: Extend $G(k,t_1,t_2) = -i \langle T c_k(t_1) c_k^+(t_2) \rangle$

Anomalous propagators

$$G(k,t_1,t_2) = \begin{pmatrix} -i\langle Tcc^+ \rangle & -i\langle Tcc \rangle \\ i\langle Tc^+c^+ \rangle & i\langle Tc^+c \rangle \end{pmatrix} = \begin{pmatrix} G & F \\ F^+ & \overline{G} \end{pmatrix}$$

Generalized Dyson equation: Gorkov equations

Anomalous self-energy: $\Delta \&$ generalized Gap equation

$$\Delta(k) = \int k'^2 dk' \langle k | V | k' \rangle \int d\omega \int d\omega' \frac{1 - f(\omega) - f(\omega')}{-\omega - \omega'} S(k', \omega) S_{pair}(k', \omega') \quad \Delta(k')$$
$$f(\omega) = \frac{1}{e^{\beta \omega} + 1}$$

Fermi function

If we replace $S(k,\omega)$ by "HF" approx. and $S_{pair}(k,\omega)$ by BCS: \Rightarrow Usual Gap equation If we take $S_{pair}(k,\omega) = S(k,\omega)$: \Rightarrow Corresponds to the homogeneous solution of Γ -matrix eq. With $S_{pair}(k,\omega)$: \Rightarrow The above and self-consistency

Consistency of Gap equation (anomalous self-energy) and Ladder diagrams

Iteration of Gorkov equations for anomalous

propagator generates

... and all other ladder diagrams at total momentum and energy zero (w.r.t. 2μ) plus anomalous self-energy terms in normal part of propagator

So truly consistent with inclusion of ladder diagrams at other total momenta and energies

CDBonn yields stronger pairing than ArV18

Green's function V 45

Proton-neutron pairing in symmetric nuclear matter

Using CDBonn

Dashed lines: quasiparticle poles

Solid lines: dressed nucleons

No pairing at saturation density!

Pairing and spectral functions

Spectral functions $S(k,\omega)$ dashed = $A(k,\omega)$ $S_{pair}(k,\omega)$ solid = $A_{S}(k,\omega)$

ρ = 0.08 fm⁻³ T = 0.5 MeV k = 193 MeV/c 0.9 k_F

Expected effect

Pairing in neutron matter

Comparison for neutron matter with CBF & Monte Carlo PRL95,192501(2005)

