CISS07 8/29/2007

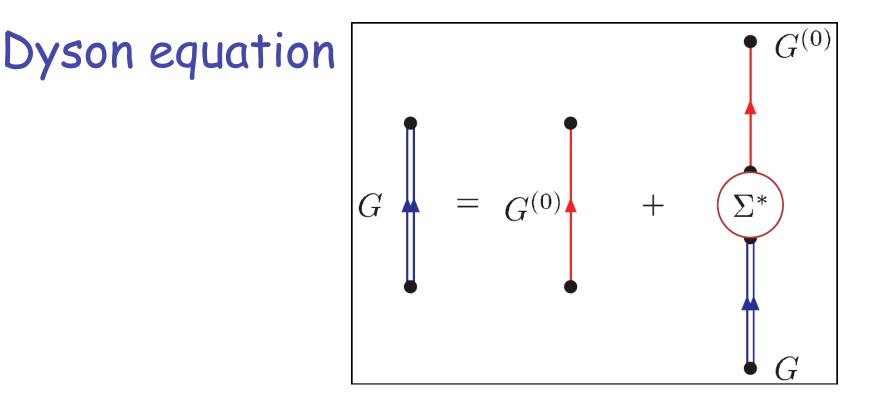
Comprehensive treatment of correlations at different energy scales in nuclei using Green's functions

Lecture 1: 8/28/07	Propagator description of single-particle motion and the link with experimental data
Lecture 2: 8/29/07	From Hartree-Fock to spectroscopic factors < 1: inclusion of long-range correlations
Lecture 3: 8/29/07	Role of short-range and tensor correlations associated with realistic interactions
Lecture 4: 8/30/07	Dispersive optical model and predictions for nuclei towards the dripline
Adv. Lecture 1: 8/30/07	Saturation problem of nuclear matter & pairing in nuclear and neutron matter
Adv. Lecture 2: 8/31/07	Quasi-particle density functional theory

Wim Dickhoff Washington University in St. Louis

Outline

- Link between sp and two-particle propagator
- Self-consistent Green's functions
- Hartree-Fock
- Dynamical self-energy and spectroscopic factors < 1
- Self-energy using "G-matrix" in second order
- Qualitative features; missing ingredients!
- Excited states and $G \Leftrightarrow G$ and excited states
- Conserving approximations; $HF \Leftrightarrow RPA e.g.$
- E(xtended) RPA & results (Giant Resonances)
- Collective excitations in the self-energy
- Influence of "long-range" correlations
- Recent developments (Faddeev summation)
- Why does (e,e´p) yield "absolute" spectroscopic factors



Looks like the propagator equation for a single particle

$$G(\alpha,\beta;E) = G^{(0)}(\alpha,\beta;E) + \sum_{\gamma,\delta} G^{(0)}(\alpha,\gamma;E) \Sigma^*(\gamma,\delta;E) G(\delta,\beta;E)$$

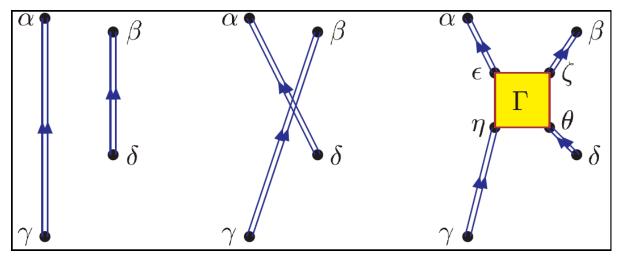
with the irreducible self-energy acting as the in-medium (complex) potential.

Link with two-particle propagator

Equation of motion for G

$$i\hbar\frac{\partial}{\partial t}G(\alpha,\beta;t-t') = \delta(t-t')\delta_{\alpha,\beta} + \varepsilon_{\alpha}G(\alpha,\beta;t-t') - \sum_{\delta} \langle \alpha | U | \delta \rangle G(\delta,\beta;t-t') + \frac{1}{2}\sum_{\delta\zeta\vartheta} \langle \alpha\delta | V | \vartheta\zeta \rangle \left\{ -\frac{i}{\hbar} \langle \Psi_{0}^{N} | T [a_{\delta_{H}}^{+}(t)a_{\zeta_{H}}(t)a_{\vartheta_{H}}(t)a_{\beta_{H}}^{+}(t')] | \Psi_{0}^{N} \rangle \right\}$$

Diagrammatic analysis of G^{II} yields



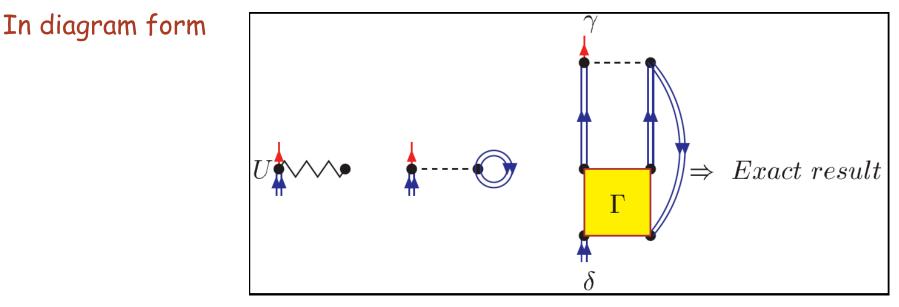
 Γ is the effective interaction (vertex function) between correlated particles in the medium.

Dyson equation and vertex function

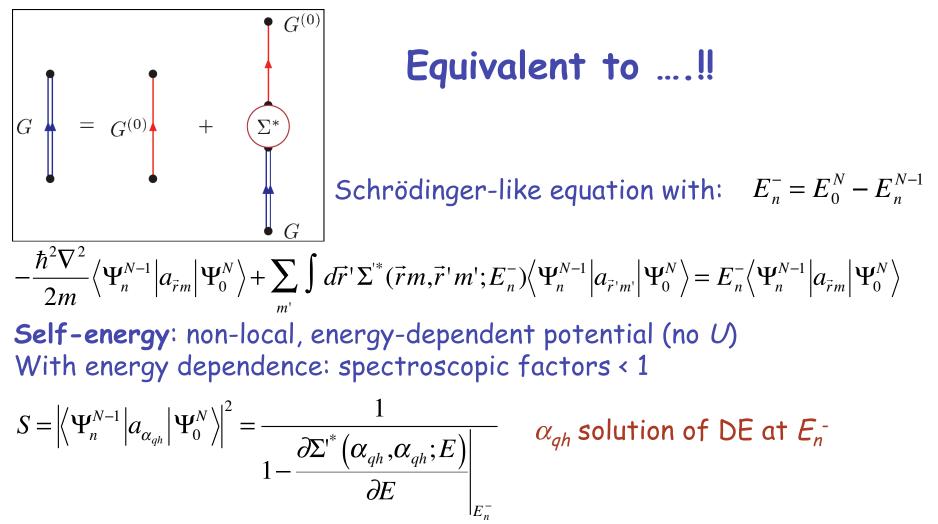
Fourier transform of equation of motion for G yields again the Dyson equation with the self-energy

$$\Sigma^{*}(\gamma,\delta;E) = -\langle \gamma | U | \delta \rangle - i \int_{C^{\uparrow}} \frac{dE'}{2\pi} \sum_{\mu\nu} \langle \gamma \mu | V | \delta \nu \rangle G(\nu,\mu;E')$$

+
$$\frac{1}{2} \int \frac{dE_{1}}{2\pi} \int \frac{dE_{2}}{2\pi} \sum_{\epsilon\mu\nu\zeta\rho\sigma} \langle \gamma \mu | V | \epsilon\nu \rangle G(\epsilon,\zeta;E_{1}) G(\nu,\rho;E_{2}) G(\sigma,\mu;E_{1}+E_{2}-E) \langle \zeta\rho | \Gamma(E_{1},E_{2};E) | \delta\sigma \rangle$$



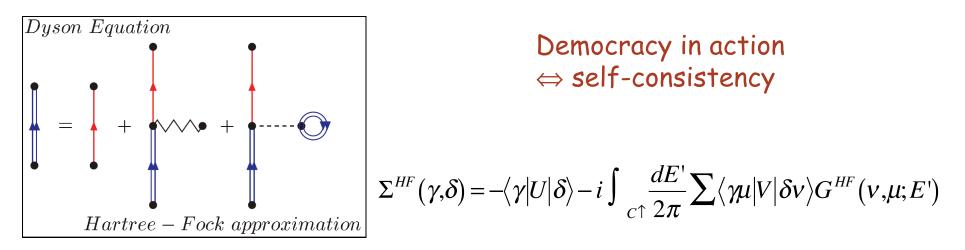
Dyson Equation and "experiment"



Physics is in the choice of the approximation to the self-energy

Hartree-Fock

For weakly interacting particles: independent propagation dominates \Rightarrow neglect vertex function in self-energy



No energy dependence \Rightarrow static mean field Not a valid strategy for realistic NN interactions With "effective" interactions can yield good quasihole wave functions HF levels full or empty; spectroscopic factors 1 or 0 accordingly

HF for "closed"-shell atoms

		Remova	l energies	Total	energy
		$_{ m HF}$	Exp.	HF	Exp.
He	1s	-0.918	-0.9040	-2.862	-2.904
Be	1s	-4.733	-4.100	-14.573	-14.667
	2s	-0.309	-0.343		
Ne	1s	-32.77	-31.70	-128.547	-128.928
	2s	-1.930	-1.782		
	2p	-0.850	-0.793		
Mg	1s	-49.03	-47.91	-199.615	-200.043
	2s	-3.768	-3.26		
	2p	-2.283	-1.81		
	3s	-0.253	-0.2811		
Ar	1s	-118.6	-117.87	-526.818	-527.549
	2s	-12.32	-12.00		
	2p	-9.571	-9.160		
	3s	-1.277	-1.075		
	3p	-0.591	-0.579		

HF good starting point for atoms but total energy dominated by core electrons.

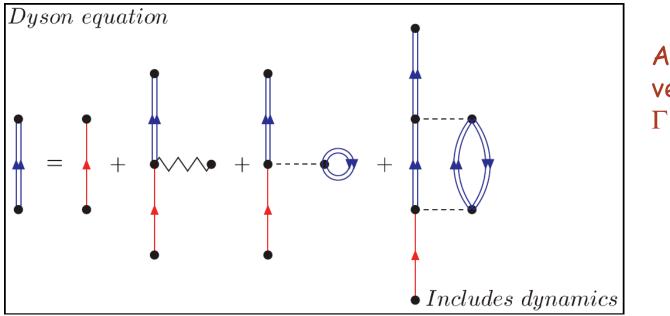
Description of valence electrons not good enough to do chemistry.

Spectroscopic factors not OK. Wave functions 🗸

Green's functions II 8

Energies in atomic units (Hartree)

Beyond $HF \Rightarrow$ dynamical self-energy



Approximate vertex function by $\Gamma = V$

Use HF propagator to initiate self-consistent solution

$$\Sigma^{(2)}(\gamma,\delta;E) = \frac{1}{2} \left\{ \sum_{p_1p_2h_3} \frac{\langle \gamma h_3 | V | p_1p_2 \rangle \langle p_1p_2 | V | \delta h_3 \rangle}{E - (\varepsilon_{p_1} + \varepsilon_{p_2} - \varepsilon_{h_3}) + i\eta} + \sum_{h_1h_2p_3} \frac{\langle \gamma p_3 | V | h_1h_2 \rangle \langle h_1h_2 | V | \delta p_3 \rangle}{E - (\varepsilon_{h_1} + \varepsilon_{h_2} - \varepsilon_{p_3}) - i\eta} \right\}$$

Poles at 2*p*1*h* and 2*h*1*p* energies Interesting consequences for solution of Dyson equation

Diagonal approximation

Further simplification: assume no mixing between major shells

$$\Sigma^{(2)}(\alpha; E) = \frac{1}{2} \left\{ \sum_{p_1 p_2 h_3} \frac{\left| \langle \alpha h_3 | V | p_1 p_2 \rangle \right|^2}{E - (\varepsilon_{p_1} + \varepsilon_{p_2} - \varepsilon_{h_3}) + i\eta} + \sum_{h_1 h_2 p_3} \frac{\left| \langle \alpha p_3 | V | h_1 h_2 \rangle \right|^2}{E - (\varepsilon_{h_1} + \varepsilon_{h_2} - \varepsilon_{p_3}) - i\eta} \right\}$$

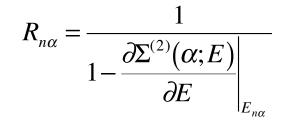
Corresponding Dyson equation

$$G(\alpha; E) = G^{HF}(\alpha; E) + G(\alpha; E) \Sigma^{(2)}(\alpha; E) G^{HF}(\alpha; E) = \frac{1}{E - \varepsilon_{\alpha} - \Sigma^{(2)}(\alpha; E)}$$

Assume discrete poles in Σ , then discrete solution (poles of G) for

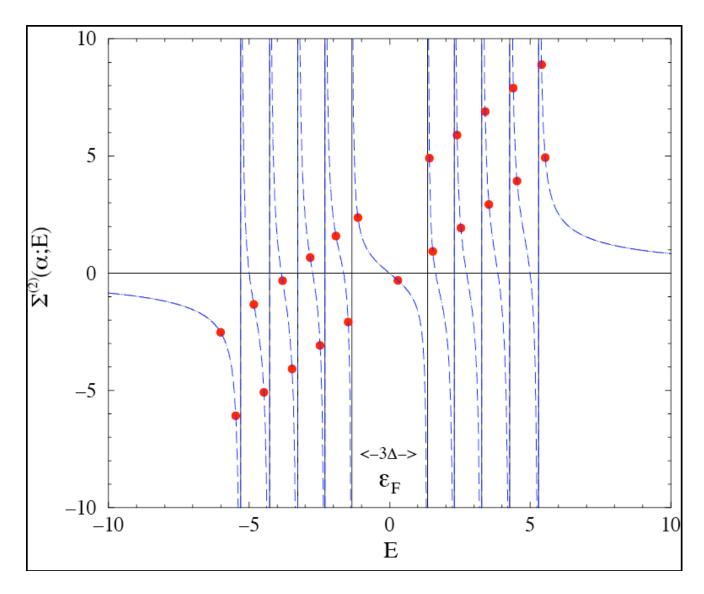
$$E_{n\alpha} = \varepsilon_{\alpha} + \Sigma^{(2)} (\alpha; E_{n\alpha})$$

With residue (spectroscopic factor)



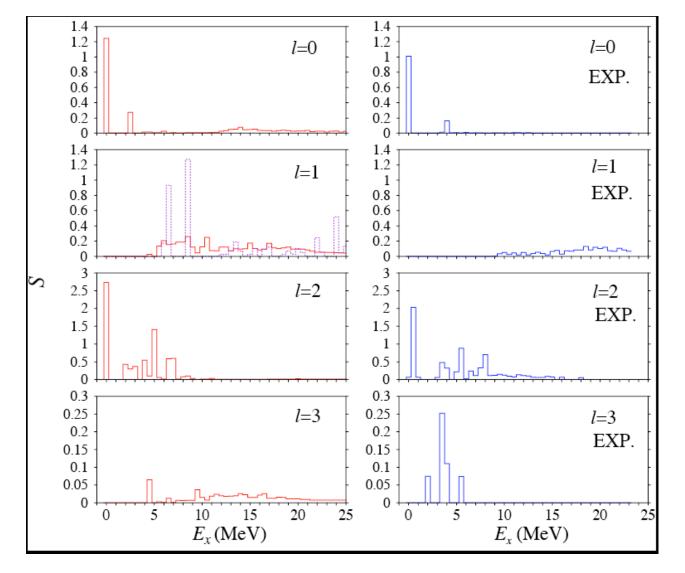
Green's functions II 10

Solutions



Explains all qualitative features of sp strength distribution in nuclei!

Self-consistent calculation with Skyrme force

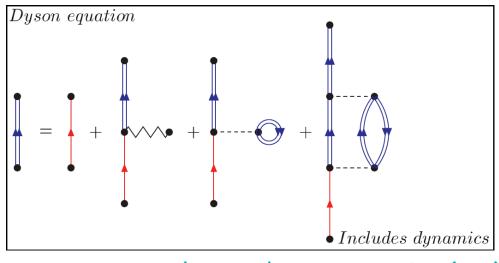


Data: ⁴⁸Ca(e,e´p) Kramer NIKHEF (1990)

Qualitatively OK No relation with realistic Vyet!

Van Neck et al. NPA530,347(1991)

Self-consistent Green's functions and the energy of the ground state of atoms



Dyson(2)

Van Neck, Peirs, Waroquier J. Chem. Phys. **115**, 15 (2001) Dahlen & von Barth J. Chem. Phys. **120**,6826 (2004)

<u>Atoms</u> : total ground state energies (a.u.)

<u>Method</u>	He	Be	Ne	Mg	Ar
DFT	-2.913	-14.671	-128.951	-200.093	-527.553
HF	-2.862	-14.573	-128.549	-199.617	-526.826
CI	-2.891	-14.617	-128.733	-199.63	-526.807
Dyson(2)	-2.899	-14.647	-128.939	-200.027	-527.511
Exp.	-2.904	-14.667	-128.928	-200.043	-527.549

How to proceed from a realistic V?

Must take effects of short-range and tensor correlations into account. Well known procedure: from V to "G"-matrix.

$$\langle \alpha \beta | G(E) | \gamma \delta \rangle = \langle \alpha \beta | V | \gamma \delta \rangle + \frac{1}{2} \sum_{\sigma \tau} \langle \alpha \beta | V | \sigma \tau \rangle \frac{\theta(\sigma - M)\theta(\tau - M)}{E - \varepsilon_{\sigma} - \varepsilon_{\tau}} \langle \sigma \tau | G(E) | \gamma \delta \rangle$$

Well-behaved; takes excitations outside configuration space M into account. Used inside $M \Rightarrow$ therefore this procedure doesn't **yet** completely include the effect of short-range and tensor correlations on sp motion.

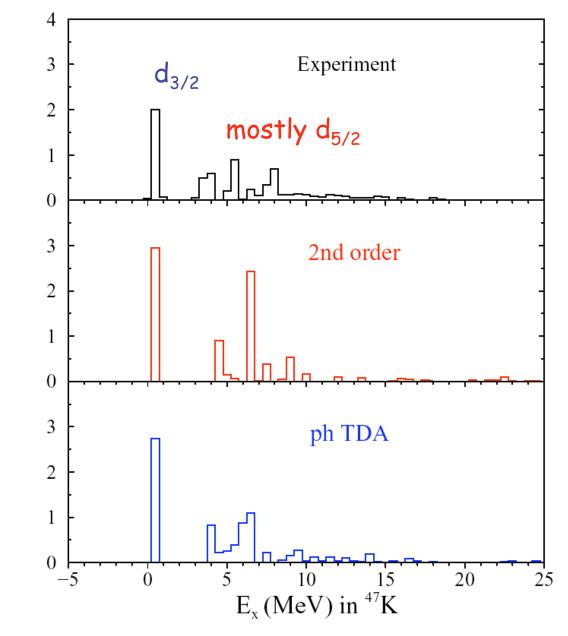
Neglect energy dependence of G then

$$\Sigma^{(2)}(\gamma,\delta;E) = \frac{1}{2} \left\{ \sum_{p_1,p_2,h_3} \frac{\langle \gamma h_3 | G | p_1 p_2 \rangle \langle p_1 p_2 | G | \delta h_3 \rangle}{E - (\varepsilon_{p_1} + \varepsilon_{p_2} - \varepsilon_{h_3}) + i\eta} + \sum_{h_1,h_2,p_3} \frac{\langle \gamma p_3 | G | h_1 h_2 \rangle \langle h_1 h_2 | G | \delta p_3 \rangle}{E - (\varepsilon_{h_1} + \varepsilon_{h_2} - \varepsilon_{p_3}) - i\eta} \right\}$$

Summations only inside M!

Spectral function ⁴⁸Ca (e,e' p) ⁴⁷K ($\ell=2$)

NIKHEF data G. Kramer, Thesis



Brand *et al.* Nucl. Phys. **A531**, 253 (1991). Rijsdijk *et al.* Nucl.Phys. **A550**, 159 (1992)

Configuration space: includes three major shells above $\epsilon_{\rm F}$

Distribution of fragments ± 100 MeV around $\epsilon_{\rm F}$

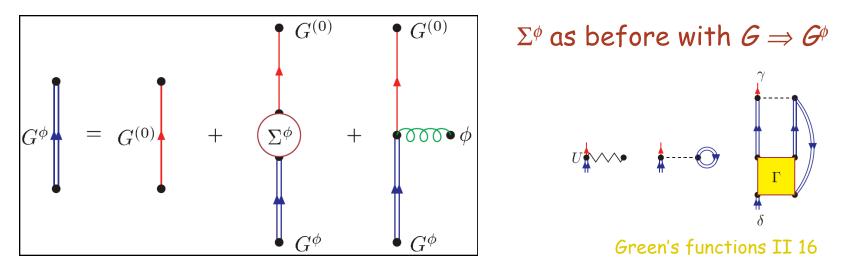
G-matrix strong enough to distribute strength in this interval

Excited states and G ... G and excited states ...

Before improving self-energy with a better description of the intermediate 2p1h and 2h1p states, it is instructive to clarify the deep relation between excited states and the sp propagator *G*. \Rightarrow Study time-dependent external fields that can probe excited states

$$\hat{\phi}(t) = \sum_{\gamma\delta} \langle \gamma | \phi(\vec{x}, t) | \delta \rangle a_{\gamma}^{+} a_{\delta} \quad \text{So Hamiltonian reads} \quad \hat{H}^{\phi}(t) = \hat{H} + \hat{\phi}(t)$$

Equations of motion as before



Conserving approximations (Baym, Kadanoff, Pitaevskii, Luttinger, Ward)

Conservation laws implied by the Hamiltonian are fulfilled by imposing certain conditions on the approximate self-energy and, consequently, the vertex function Γ : in particular the issue of self-consistency is critical!

 \Rightarrow particle number, momentum, energy, ...conservation

 \Rightarrow study consequences for the description of excited states

Write
$$G^{\phi}(\alpha, \overline{\beta}, t-t') = -\frac{i}{\hbar} \frac{\langle \Psi_0 | T[\hat{S}a_{\alpha_F}(t)a_{\overline{\beta}_F}^+(t')] | \Psi_0 \rangle}{\langle \Psi_0 | T[\hat{S}] | \Psi_0 \rangle}$$
 as an expansion in ϕ

In linear response (lowest order in ϕ): Functional derivative of G^{ϕ} yields $\frac{\delta G^{\phi}(\alpha, \overline{\beta}, t-t')}{\delta \phi_{\gamma \overline{\delta}}(t'')} = \frac{i}{\hbar} \Pi(\alpha t, \beta^{-1}t'; \gamma t'', \delta^{-1}t'')$

corresponding to the *ph* limit of the two-particle propagator.

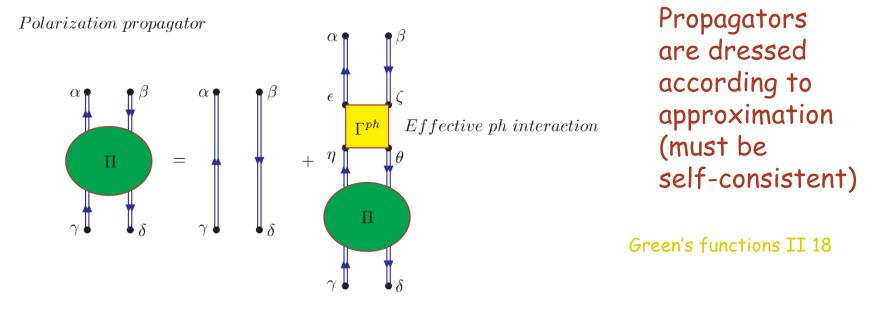
Conserving description of excited states

Fourier transform of two-time "polarization" propagator

$$\Pi(\alpha,\beta^{-1};\gamma,\delta^{-1};E) = \sum_{n\neq 0} \frac{\langle \Psi_0 | a_{\overline{\beta}}^+ a_{\alpha} | \Psi_n \rangle \langle \Psi_n | a_{\gamma}^+ a_{\overline{\delta}} | \Psi_0 \rangle}{E - (E_n - E_0) + i\eta} - \sum_{n\neq 0} \frac{\langle \Psi_0 | a_{\gamma}^+ a_{\overline{\delta}} | \Psi_n \rangle \langle \Psi_n | a_{\overline{\beta}}^+ a_{\alpha} | \Psi_0 \rangle}{E + (E_n - E_0) - i\eta}$$

contains all relevant information about excited states (location and one-body transition strength).

Integral equation for three-time polarization propagator from Dyson equation!



Particle-hole interaction

$$\Gamma^{ph}(\alpha t_1, \beta^{-1}t_2, \gamma t_3, \delta^{-1}t_4) = \frac{\delta \Sigma(\alpha, \overline{\beta}; t_1 - t_2)}{\delta G(\gamma, \overline{\delta}; t_3 - t_4)}$$

If G is conserving, so is Π with this Γ^{ph} Looks complicated ... but ...

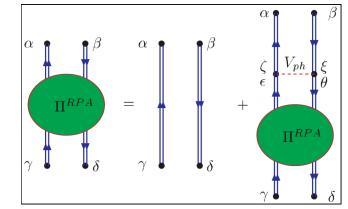
Hartree-Fock and RPA

$$\frac{\alpha}{\overline{\beta}} \longrightarrow E' \quad \Rightarrow \quad -i\hbar\delta(t-t')\sum_{\theta\overline{\epsilon}} \langle \alpha\overline{\epsilon} | V | \overline{\beta}\theta \rangle G^{HF}(\theta,\overline{\epsilon};t-t^+)$$

Functional derivative equivalent to breaking internal propagator line so $\Gamma_{HF}^{ph}(\alpha t_{1},\beta^{-1}t_{2},\gamma t_{3},\delta^{-1}t_{4}) = -i\hbar\delta(t_{1}-t_{2})\delta(t_{1}-t_{3})\delta(t_{1}-t_{4})\langle\alpha\overline{\delta}|V|\overline{\beta}\gamma\rangle$ resulting in the RPA approximation to III

resulting in the RPA approximation to $\Pi {l\hspace{-.05cm}l} {l\hspace{-.05cm}l}$

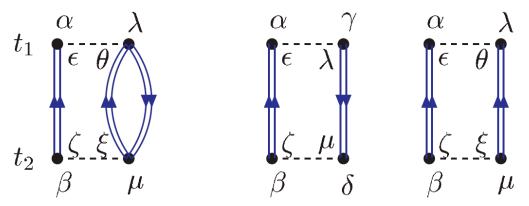
sp propagators \Rightarrow HF



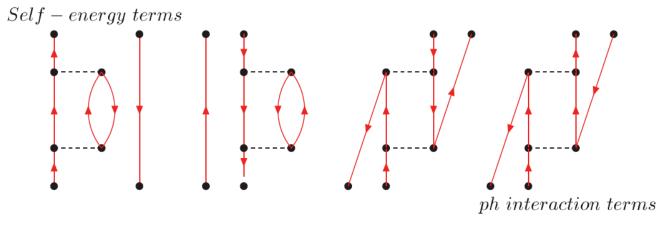
Green's functions II 19

Beyond RPA = beyond mean-field for G

Second-order self-energy

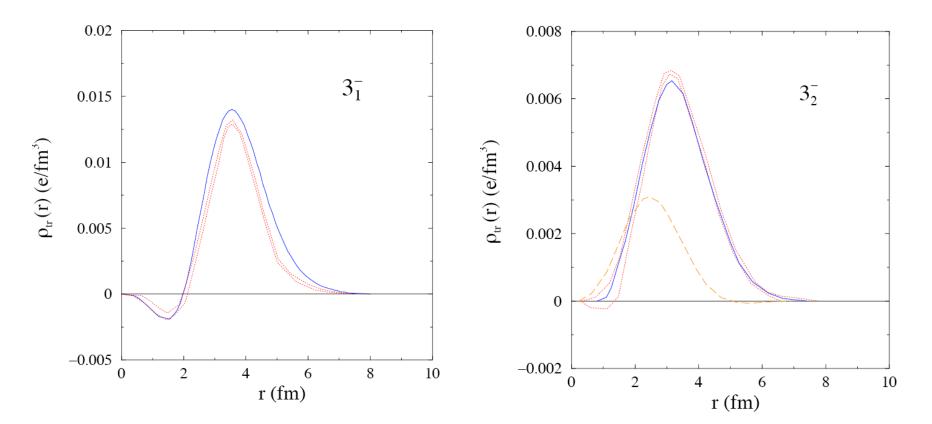


Leads to a consistent coupling of 1p1h to 2p2h configurations!

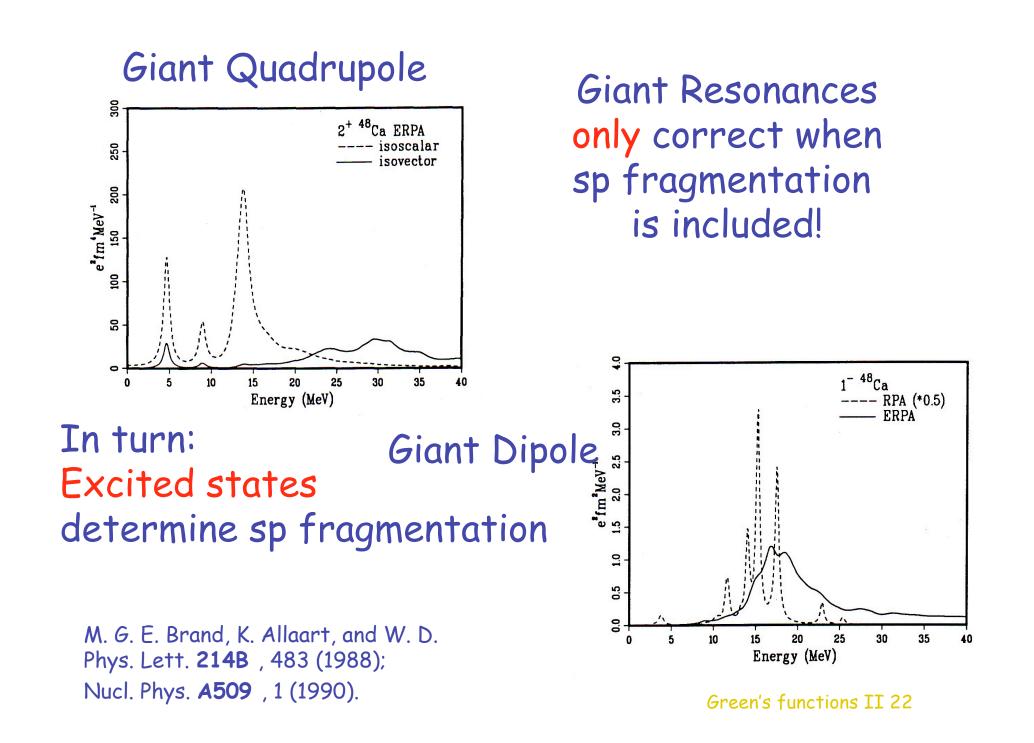


E(xtended)RPA results

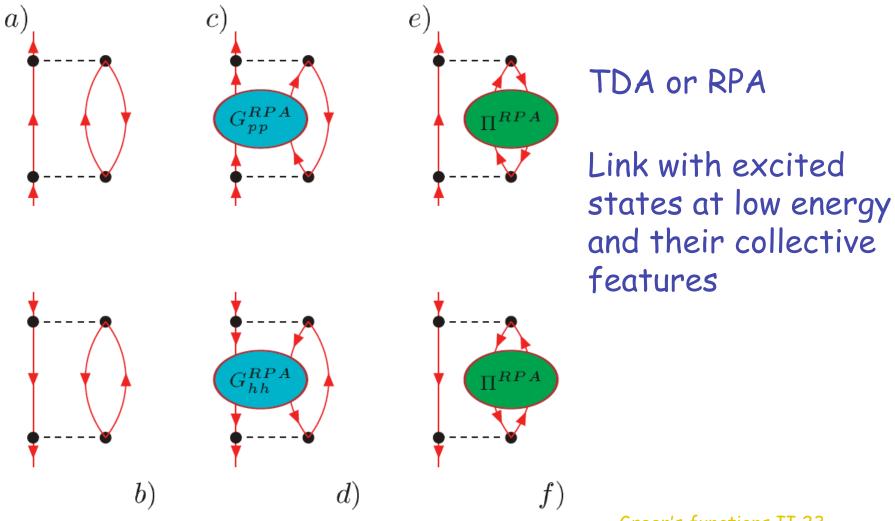
Transition densities in ⁴⁸Ca



Brand et al. Nucl. Phys. A509, 1 (1990)

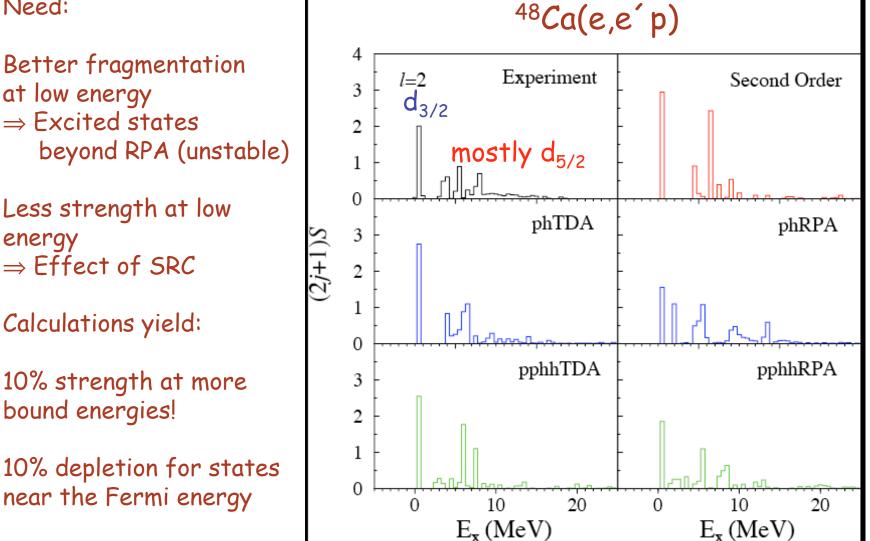


Long-range correlations \Rightarrow typical self-energy contributions



Results for TDA & RPA self-energies

Need:

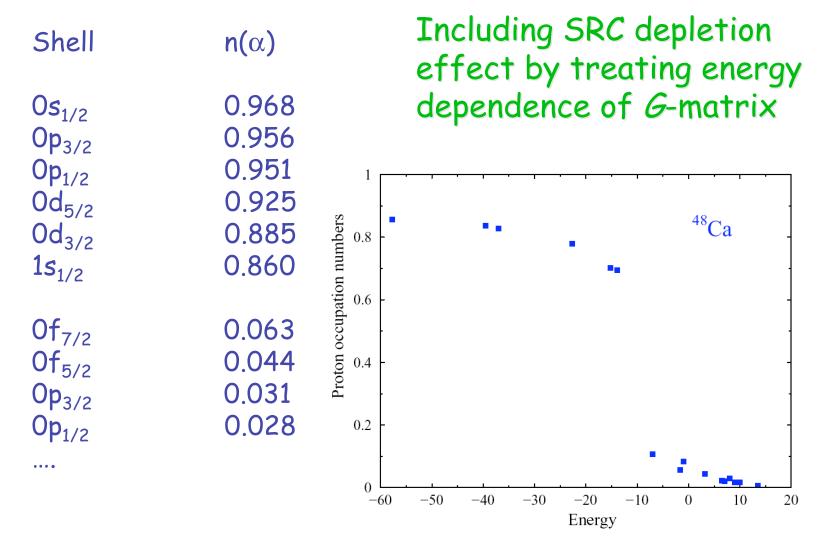


Green's functions II 24

Occupation numbers ⁴⁸Ca

Shell	$\Sigma^{(2)}$	Σ_{ph}^{TDA}	Σ^{RPA}_{ph}	Σ_{pphh}^{TDA}	Σ^{RPA}_{pphh}
$0s_{\frac{1}{2}}$.967	.968	.963	.965	.952
$0p_{\frac{3}{2}}$.955	.956	.944	.950	.930
$0p_{\frac{1}{2}}$.951	.951	.939	.944	.920
$0d_{\frac{5}{2}}$.920	.925	.915	.898	.867
$0d_{\frac{3}{2}}$.877	.885	.891	.842	.780
$1s\frac{1}{2}$.869	.860	.907	.818	.773
$0f\frac{7}{2}$.060	.063	.048	.082	.120
$0f\frac{5}{2}$.048	.044	.043	.064	.092
$1p_{\frac{3}{2}}$.033	.031	.036	.049	.063
$1p_{\frac{1}{2}}$.030	.028	.035	.042	.050
$0g \ 1d \ 2s$.014	.014	.019	.018	.026
$0h \ 1f \ 2p$.006	.006	.006	.007	.009
Total	20.053	20.093	20.125	20.165	20.370

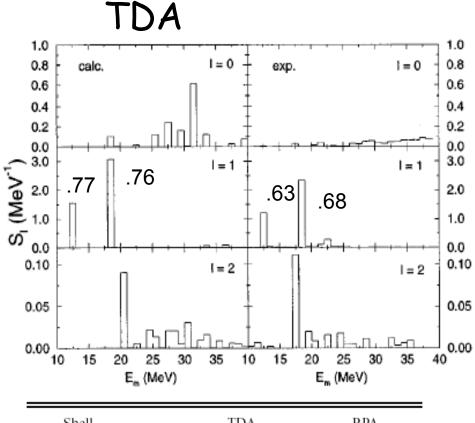
Occupation numbers from low-energy correlations



Green's functions II 26

Spectroscopic Strength in ¹⁶O

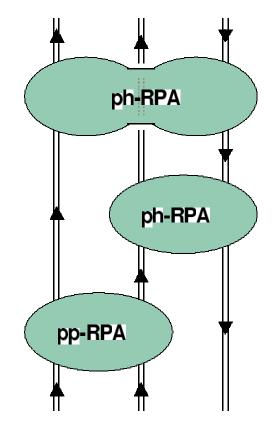
- \bullet Influence of SRC \checkmark \checkmark
- Translational Invariance ×
- Influence of LRC "√"
 TDA for 2p1h and 2h1p
 Geurts et al.
 PRC53, 2207 (1996)
- Influence of LRC J J
 RPA + Faddeev
 C. Barbieri and WHD, PRC65, 064313 (2002)



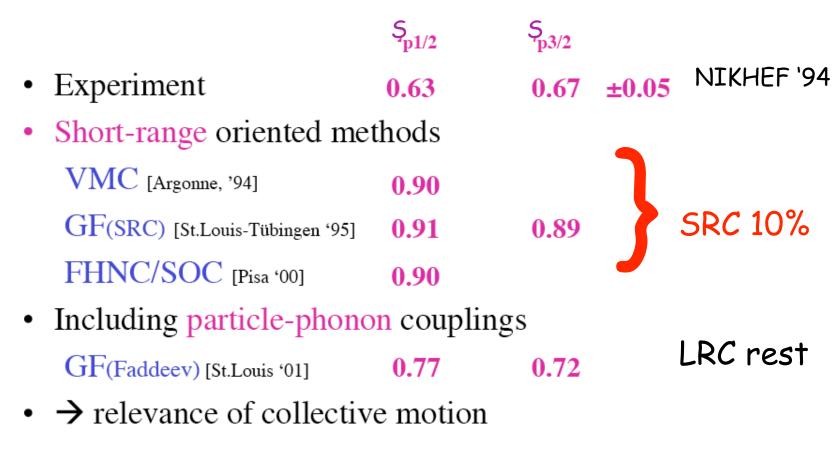
Shell	TDA	RPA
d _{3/2}	0.866	0.838
s 1/2	0.882	0.842
d 5/2	0.894	0.875
$p_{1/2}$	0.775	0.745
$p_{3/2}$	0.766	0.725

Faddeev technique and Long-Range Correlations

- Both pp (hh) and ph phonons are collective in nuclei using RPA
- Faddeev technique allows correct summation to all orders of these phonons
- Formalism:
 Phys. Rev. C63, 034313 (2001)
- Results: for ¹⁶O
 Phys. Rev. C65, 064313 (2002)

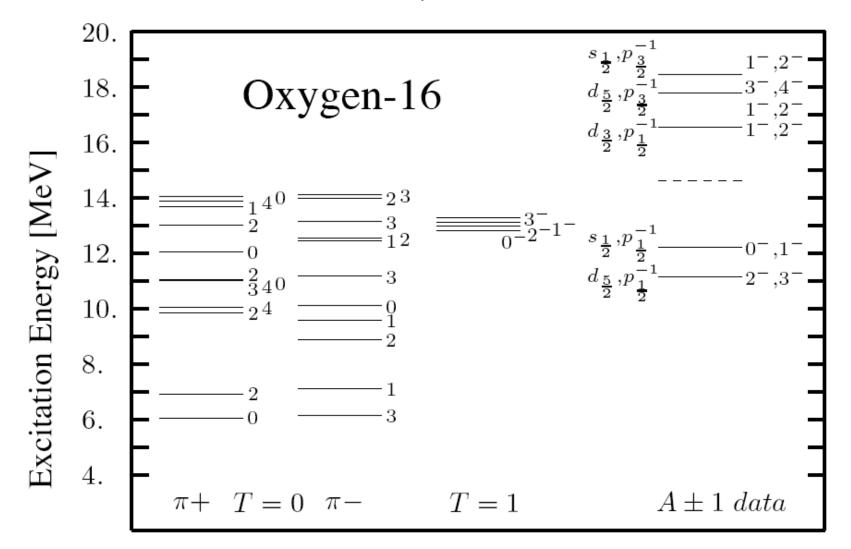


Some theoretical results for ¹⁶O

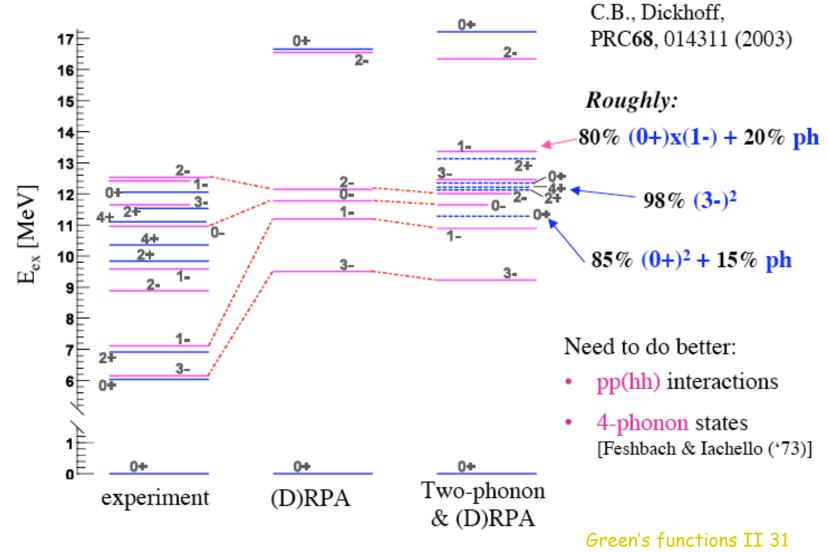


LRC ≈ particle-phonon (GR) coupling

Excitation spectrum of ¹⁶O



Improving excitation spectra beyond RPA Coupling of two-phonons in ¹⁶O



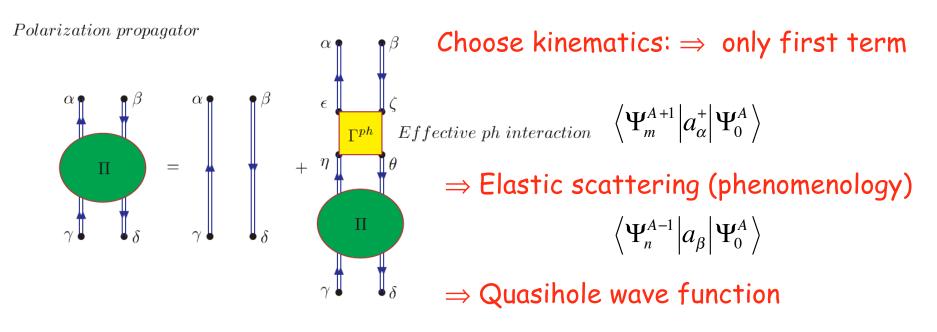
Faddeev results for Ne atom ionization energies

HF Dyson(2) F-TDA(3) F-RPA(3) Experiment 2p -0.850 -0.763 -0.797 -0.790 -0.7932s -1.930 -1.750 -1.794 -1.785 -1.782

Small basis; large basis in progress Barbieri, Van Neck, WD. PRA to be published

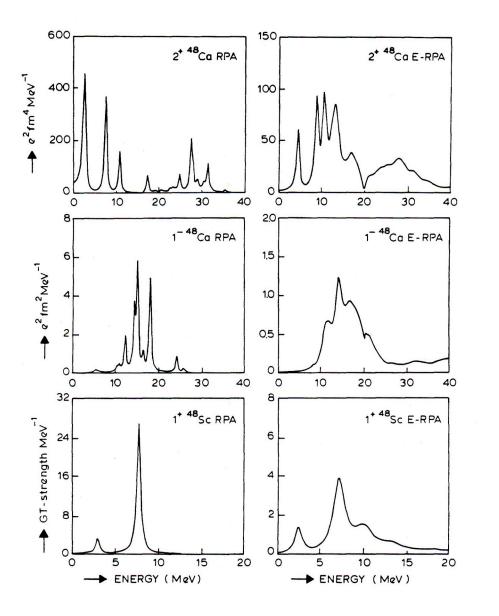
FSI and (e,e'p) \Leftrightarrow analysis $\hat{O} = \sum_{\alpha\beta} \langle \alpha | O | \beta \rangle a_{\alpha}^{+} a_{\beta}$ Electron Scattering \Rightarrow one-body operator $\left| \langle \Psi_{n}^{A} | \hat{O} | \Psi_{0}^{A} \rangle \right|^{2} = \sum \langle \alpha | O | \beta \rangle^{*} \langle \gamma | O | \delta \rangle \langle \Psi_{0}^{A} | a_{\beta}^{+} a_{\alpha} | \Psi_{n}^{A} \rangle \langle \Psi_{n}^{A} | a_{\gamma}^{+} a_{\delta} | \Psi_{0}^{A} \rangle$

Requires (imaginary part of) exact polarization propagator



"Absolute" spectroscopic factors $\boldsymbol{\sqrt{}}$

Difference between RPA and ERPA



GQR

GDR

Gamow-Teller